Mister Exam

Other calculators:


2^x/(1+x^2)

Limit of the function 2^x/(1+x^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   x  \
     |  2   |
 lim |------|
x->oo|     2|
     \1 + x /
$$\lim_{x \to \infty}\left(\frac{2^{x}}{x^{2} + 1}\right)$$
Limit(2^x/(1 + x^2), x, oo, dir='-')
Lopital's rule
We have indeterminateness of type
oo/oo,

i.e. limit for the numerator is
$$\lim_{x \to \infty} 2^{x} = \infty$$
and limit for the denominator is
$$\lim_{x \to \infty}\left(x^{2} + 1\right) = \infty$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to \infty}\left(\frac{2^{x}}{x^{2} + 1}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\frac{d}{d x} 2^{x}}{\frac{d}{d x} \left(x^{2} + 1\right)}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{2^{x} \log{\left(2 \right)}}{2 x}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\frac{d}{d x} \frac{2^{x} \log{\left(2 \right)}}{2}}{\frac{d}{d x} x}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{2^{x} \log{\left(2 \right)}^{2}}{2}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\frac{d}{d x} \log{\left(2 \right)}^{2}}{\frac{d}{d x} 2 \cdot 2^{- x}}\right)$$
=
$$\lim_{x \to \infty} 0$$
=
$$\lim_{x \to \infty} 0$$
=
$$\infty$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 3 time(s)
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{2^{x}}{x^{2} + 1}\right) = \infty$$
$$\lim_{x \to 0^-}\left(\frac{2^{x}}{x^{2} + 1}\right) = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{2^{x}}{x^{2} + 1}\right) = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{2^{x}}{x^{2} + 1}\right) = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{2^{x}}{x^{2} + 1}\right) = 1$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{2^{x}}{x^{2} + 1}\right) = 0$$
More at x→-oo
Rapid solution [src]
oo
$$\infty$$
The graph
Limit of the function 2^x/(1+x^2)