We have indeterminateness of type
oo/oo,
i.e. limit for the numerator is
$$\lim_{x \to \infty} 2^{x} = \infty$$
and limit for the denominator is
$$\lim_{x \to \infty}\left(x^{2} + 1\right) = \infty$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to \infty}\left(\frac{2^{x}}{x^{2} + 1}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\frac{d}{d x} 2^{x}}{\frac{d}{d x} \left(x^{2} + 1\right)}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{2^{x} \log{\left(2 \right)}}{2 x}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\frac{d}{d x} \frac{2^{x} \log{\left(2 \right)}}{2}}{\frac{d}{d x} x}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{2^{x} \log{\left(2 \right)}^{2}}{2}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\frac{d}{d x} \log{\left(2 \right)}^{2}}{\frac{d}{d x} 2 \cdot 2^{- x}}\right)$$
=
$$\lim_{x \to \infty} 0$$
=
$$\lim_{x \to \infty} 0$$
=
$$\infty$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 3 time(s)