Mister Exam

Other calculators:


2*x^5

Limit of the function 2*x^5

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   5\
 lim \2*x /
x->oo      
$$\lim_{x \to \infty}\left(2 x^{5}\right)$$
Limit(2*x^5, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(2 x^{5}\right)$$
Let's divide numerator and denominator by x^5:
$$\lim_{x \to \infty}\left(2 x^{5}\right)$$ =
$$\lim_{x \to \infty} \frac{1}{\frac{1}{2} \frac{1}{x^{5}}}$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty} \frac{1}{\frac{1}{2} \frac{1}{x^{5}}} = \lim_{u \to 0^+}\left(\frac{2}{u^{5}}\right)$$
=
$$\frac{2}{0} = \infty$$

The final answer:
$$\lim_{x \to \infty}\left(2 x^{5}\right) = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
oo
$$\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(2 x^{5}\right) = \infty$$
$$\lim_{x \to 0^-}\left(2 x^{5}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(2 x^{5}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(2 x^{5}\right) = 2$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(2 x^{5}\right) = 2$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(2 x^{5}\right) = -\infty$$
More at x→-oo
The graph
Limit of the function 2*x^5