Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of -35-14*x-6*x^2
Limit of (-exp(-x)-2*x+exp(x))/(x-sin(x))
Limit of (e^(5*x)-e^x)/(x^3+asin(x))
Limit of (3-4*x^2+8*x^4)/(1+2*x^4)
Derivative of
:
2*e^x
Integral of d{x}
:
2*e^x
Identical expressions
two *e^x
2 multiply by e to the power of x
two multiply by e to the power of x
2*ex
2e^x
2ex
Limit of the function
/
2*e^x
Limit of the function 2*e^x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ x\ lim \2*E / x->-oo
lim
x
→
−
∞
(
2
e
x
)
\lim_{x \to -\infty}\left(2 e^{x}\right)
x
→
−
∞
lim
(
2
e
x
)
Limit(2*E^x, x, -oo)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
0
50000
Plot the graph
Rapid solution
[src]
0
0
0
0
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
−
∞
(
2
e
x
)
=
0
\lim_{x \to -\infty}\left(2 e^{x}\right) = 0
x
→
−
∞
lim
(
2
e
x
)
=
0
lim
x
→
∞
(
2
e
x
)
=
∞
\lim_{x \to \infty}\left(2 e^{x}\right) = \infty
x
→
∞
lim
(
2
e
x
)
=
∞
More at x→oo
lim
x
→
0
−
(
2
e
x
)
=
2
\lim_{x \to 0^-}\left(2 e^{x}\right) = 2
x
→
0
−
lim
(
2
e
x
)
=
2
More at x→0 from the left
lim
x
→
0
+
(
2
e
x
)
=
2
\lim_{x \to 0^+}\left(2 e^{x}\right) = 2
x
→
0
+
lim
(
2
e
x
)
=
2
More at x→0 from the right
lim
x
→
1
−
(
2
e
x
)
=
2
e
\lim_{x \to 1^-}\left(2 e^{x}\right) = 2 e
x
→
1
−
lim
(
2
e
x
)
=
2
e
More at x→1 from the left
lim
x
→
1
+
(
2
e
x
)
=
2
e
\lim_{x \to 1^+}\left(2 e^{x}\right) = 2 e
x
→
1
+
lim
(
2
e
x
)
=
2
e
More at x→1 from the right
The graph