Mister Exam

Other calculators:


2-x^2

Limit of the function 2-x^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /     2\
 lim \2 - x /
x->2+        
$$\lim_{x \to 2^+}\left(2 - x^{2}\right)$$
Limit(2 - x^2, x, 2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
-2
$$-2$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 2^-}\left(2 - x^{2}\right) = -2$$
More at x→2 from the left
$$\lim_{x \to 2^+}\left(2 - x^{2}\right) = -2$$
$$\lim_{x \to \infty}\left(2 - x^{2}\right) = -\infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(2 - x^{2}\right) = 2$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(2 - x^{2}\right) = 2$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(2 - x^{2}\right) = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(2 - x^{2}\right) = 1$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(2 - x^{2}\right) = -\infty$$
More at x→-oo
One‐sided limits [src]
     /     2\
 lim \2 - x /
x->2+        
$$\lim_{x \to 2^+}\left(2 - x^{2}\right)$$
-2
$$-2$$
= -2.0
     /     2\
 lim \2 - x /
x->2-        
$$\lim_{x \to 2^-}\left(2 - x^{2}\right)$$
-2
$$-2$$
= -2.0
= -2.0
Numerical answer [src]
-2.0
-2.0
The graph
Limit of the function 2-x^2