Mister Exam

Other calculators:


(2-x)^(1/(-1+x))

Limit of the function (2-x)^(1/(-1+x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
              1   
            ------
            -1 + x
 lim (2 - x)      
x->1+             
$$\lim_{x \to 1^+} \left(2 - x\right)^{\frac{1}{x - 1}}$$
Limit((2 - x)^(1/(-1 + x)), x, 1)
Detail solution
Let's take the limit
$$\lim_{x \to 1^+} \left(2 - x\right)^{\frac{1}{x - 1}}$$
transform
do replacement
$$u = \frac{1}{1 - x}$$
then
$$\lim_{x \to 1^+} \left(1 + \frac{1}{\frac{1}{1 - x}}\right)^{\frac{1}{x - 1}}$$ =
=
$$\lim_{u \to 1^+} \left(2 - \frac{u - 1}{u}\right)^{\frac{1}{-1 + \frac{u - 1}{u}}}$$
=
$$\lim_{u \to 1^+} \left(1 + \frac{1}{u}\right)^{\frac{1}{-1 + \frac{u - 1}{u}}}$$
=
$$\left(\left(\lim_{u \to 1^+} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{\frac{1}{u \left(-1 + \frac{u - 1}{u}\right)}}$$
The limit
$$\lim_{u \to 1^+} \left(1 + \frac{1}{u}\right)^{u}$$
is second remarkable limit, is equal to e ~ 2.718281828459045
then
$$\left(\left(\lim_{u \to 1^+} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{\frac{1}{u \left(-1 + \frac{u - 1}{u}\right)}} = e^{\frac{1}{u \left(-1 + \frac{u - 1}{u}\right)}}$$

The final answer:
$$\lim_{x \to 1^+} \left(2 - x\right)^{\frac{1}{x - 1}} = e^{-1}$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
 -1
e  
$$e^{-1}$$
One‐sided limits [src]
              1   
            ------
            -1 + x
 lim (2 - x)      
x->1+             
$$\lim_{x \to 1^+} \left(2 - x\right)^{\frac{1}{x - 1}}$$
 -1
e  
$$e^{-1}$$
= 0.367879441171442
              1   
            ------
            -1 + x
 lim (2 - x)      
x->1-             
$$\lim_{x \to 1^-} \left(2 - x\right)^{\frac{1}{x - 1}}$$
 -1
e  
$$e^{-1}$$
= 0.367879441171442
= 0.367879441171442
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 1^-} \left(2 - x\right)^{\frac{1}{x - 1}} = e^{-1}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \left(2 - x\right)^{\frac{1}{x - 1}} = e^{-1}$$
$$\lim_{x \to \infty} \left(2 - x\right)^{\frac{1}{x - 1}} = 1$$
More at x→oo
$$\lim_{x \to 0^-} \left(2 - x\right)^{\frac{1}{x - 1}} = \frac{1}{2}$$
More at x→0 from the left
$$\lim_{x \to 0^+} \left(2 - x\right)^{\frac{1}{x - 1}} = \frac{1}{2}$$
More at x→0 from the right
$$\lim_{x \to -\infty} \left(2 - x\right)^{\frac{1}{x - 1}} = 1$$
More at x→-oo
Numerical answer [src]
0.367879441171442
0.367879441171442
The graph
Limit of the function (2-x)^(1/(-1+x))