Mister Exam

Other calculators:


2/(3*x^(1/3))

Limit of the function 2/(3*x^(1/3))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   2   \
 lim |-------|
x->0+|  3 ___|
     \3*\/ x /
$$\lim_{x \to 0^+}\left(\frac{2}{3 \sqrt[3]{x}}\right)$$
Limit(2/((3*x^(1/3))), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{2}{3 \sqrt[3]{x}}\right) = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{2}{3 \sqrt[3]{x}}\right) = \infty$$
$$\lim_{x \to \infty}\left(\frac{2}{3 \sqrt[3]{x}}\right) = 0$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{2}{3 \sqrt[3]{x}}\right) = \frac{2}{3}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{2}{3 \sqrt[3]{x}}\right) = \frac{2}{3}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{2}{3 \sqrt[3]{x}}\right) = 0$$
More at x→-oo
One‐sided limits [src]
     /   2   \
 lim |-------|
x->0+|  3 ___|
     \3*\/ x /
$$\lim_{x \to 0^+}\left(\frac{2}{3 \sqrt[3]{x}}\right)$$
oo
$$\infty$$
= 14.2987178715596
     /   2   \
 lim |-------|
x->0-|  3 ___|
     \3*\/ x /
$$\lim_{x \to 0^-}\left(\frac{2}{3 \sqrt[3]{x}}\right)$$
        2/3
-oo*(-1)   
$$- \infty \left(-1\right)^{\frac{2}{3}}$$
= (1.77502467387166 - 3.0744329198341j)
= (1.77502467387166 - 3.0744329198341j)
Rapid solution [src]
oo
$$\infty$$
Numerical answer [src]
14.2987178715596
14.2987178715596
The graph
Limit of the function 2/(3*x^(1/3))