Mister Exam

Limit of the function 2/3

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (2/3)
x->0+     
$$\lim_{x \to 0^+} \frac{2}{3}$$
Limit(2/3, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
 lim (2/3)
x->0+     
$$\lim_{x \to 0^+} \frac{2}{3}$$
2/3
$$\frac{2}{3}$$
= 0.666666666666667
 lim (2/3)
x->0-     
$$\lim_{x \to 0^-} \frac{2}{3}$$
2/3
$$\frac{2}{3}$$
= 0.666666666666667
= 0.666666666666667
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \frac{2}{3} = \frac{2}{3}$$
More at x→0 from the left
$$\lim_{x \to 0^+} \frac{2}{3} = \frac{2}{3}$$
$$\lim_{x \to \infty} \frac{2}{3} = \frac{2}{3}$$
More at x→oo
$$\lim_{x \to 1^-} \frac{2}{3} = \frac{2}{3}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \frac{2}{3} = \frac{2}{3}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \frac{2}{3} = \frac{2}{3}$$
More at x→-oo
Rapid solution [src]
2/3
$$\frac{2}{3}$$
Numerical answer [src]
0.666666666666667
0.666666666666667
The graph
Limit of the function 2/3