Mister Exam

Limit of the function 2/3

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (2/3)
x->0+     
limx0+23\lim_{x \to 0^+} \frac{2}{3}
Limit(2/3, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-1.0-0.8-0.6-0.4-0.21.00.00.20.40.60.80.660.68
One‐sided limits [src]
 lim (2/3)
x->0+     
limx0+23\lim_{x \to 0^+} \frac{2}{3}
2/3
23\frac{2}{3}
= 0.666666666666667
 lim (2/3)
x->0-     
limx023\lim_{x \to 0^-} \frac{2}{3}
2/3
23\frac{2}{3}
= 0.666666666666667
= 0.666666666666667
Other limits x→0, -oo, +oo, 1
limx023=23\lim_{x \to 0^-} \frac{2}{3} = \frac{2}{3}
More at x→0 from the left
limx0+23=23\lim_{x \to 0^+} \frac{2}{3} = \frac{2}{3}
limx23=23\lim_{x \to \infty} \frac{2}{3} = \frac{2}{3}
More at x→oo
limx123=23\lim_{x \to 1^-} \frac{2}{3} = \frac{2}{3}
More at x→1 from the left
limx1+23=23\lim_{x \to 1^+} \frac{2}{3} = \frac{2}{3}
More at x→1 from the right
limx23=23\lim_{x \to -\infty} \frac{2}{3} = \frac{2}{3}
More at x→-oo
Rapid solution [src]
2/3
23\frac{2}{3}
Numerical answer [src]
0.666666666666667
0.666666666666667
The graph
Limit of the function 2/3