Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of ((-4+3*x)/(2+3*x))^(1+x)/3
Limit of (-16+2^x)/(-1+5*sqrt(x)*(5-x))
Limit of (-14+x^2-5*x)/(-6+x+2*x^2)
Limit of (3+x^2+4*x)/(1+x^3)
Sum of series
:
2/n
Identical expressions
two /n
2 divide by n
two divide by n
Similar expressions
(3-n+2*n^2)/n^2
log((1+n^2)/n^2)/log((1+(1+n)^2)/(1+n)^2)
(1+n+(1+n)^2)/(n+n^2)
Limit of the function
/
2/n
Limit of the function 2/n
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/2\ lim |-| n->oo\n/
$$\lim_{n \to \infty}\left(\frac{2}{n}\right)$$
Limit(2/n, n, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{n \to \infty}\left(\frac{2}{n}\right)$$
Let's divide numerator and denominator by n:
$$\lim_{n \to \infty}\left(\frac{2}{n}\right)$$ =
$$\lim_{n \to \infty}\left(\frac{2 \frac{1}{n}}{1}\right)$$
Do Replacement
$$u = \frac{1}{n}$$
then
$$\lim_{n \to \infty}\left(\frac{2 \frac{1}{n}}{1}\right) = \lim_{u \to 0^+}\left(2 u\right)$$
=
$$0 \cdot 2 = 0$$
The final answer:
$$\lim_{n \to \infty}\left(\frac{2}{n}\right) = 0$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
0
$$0$$
Expand and simplify
Other limits n→0, -oo, +oo, 1
$$\lim_{n \to \infty}\left(\frac{2}{n}\right) = 0$$
$$\lim_{n \to 0^-}\left(\frac{2}{n}\right) = -\infty$$
More at n→0 from the left
$$\lim_{n \to 0^+}\left(\frac{2}{n}\right) = \infty$$
More at n→0 from the right
$$\lim_{n \to 1^-}\left(\frac{2}{n}\right) = 2$$
More at n→1 from the left
$$\lim_{n \to 1^+}\left(\frac{2}{n}\right) = 2$$
More at n→1 from the right
$$\lim_{n \to -\infty}\left(\frac{2}{n}\right) = 0$$
More at n→-oo
The graph