Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of -7+x^2-4*x-2*x^3
Limit of (x^2+10*x)/tan(5*x)
Limit of ((1+x)/(2+x))^(1+x)
Limit of ((-1+x)/(5+4*x))^(3*x)
Identical expressions
three ^n* three ^(one -n)
3 to the power of n multiply by 3 to the power of (1 minus n)
three to the power of n multiply by three to the power of (one minus n)
3n*3(1-n)
3n*31-n
3^n3^(1-n)
3n3(1-n)
3n31-n
3^n3^1-n
Similar expressions
3^n*3^(1+n)
Limit of the function
/
3^n*3^(1-n)
Limit of the function 3^n*3^(1-n)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ n 1 - n\ lim \3 *3 / n->oo
lim
n
→
∞
(
3
n
3
1
−
n
)
\lim_{n \to \infty}\left(3^{n} 3^{1 - n}\right)
n
→
∞
lim
(
3
n
3
1
−
n
)
Limit(3^n*3^(1 - n), n, oo, dir='-')
The graph
-0.010
-0.008
-0.006
-0.004
-0.002
0.010
0.000
0.002
0.004
0.006
0.008
0.00
Plot the graph
Rapid solution
[src]
3
3
3
3
Expand and simplify
Other limits n→0, -oo, +oo, 1
lim
n
→
∞
(
3
n
3
1
−
n
)
=
3
\lim_{n \to \infty}\left(3^{n} 3^{1 - n}\right) = 3
n
→
∞
lim
(
3
n
3
1
−
n
)
=
3
lim
n
→
0
−
(
3
n
3
1
−
n
)
=
3
\lim_{n \to 0^-}\left(3^{n} 3^{1 - n}\right) = 3
n
→
0
−
lim
(
3
n
3
1
−
n
)
=
3
More at n→0 from the left
lim
n
→
0
+
(
3
n
3
1
−
n
)
=
3
\lim_{n \to 0^+}\left(3^{n} 3^{1 - n}\right) = 3
n
→
0
+
lim
(
3
n
3
1
−
n
)
=
3
More at n→0 from the right
lim
n
→
1
−
(
3
n
3
1
−
n
)
=
3
\lim_{n \to 1^-}\left(3^{n} 3^{1 - n}\right) = 3
n
→
1
−
lim
(
3
n
3
1
−
n
)
=
3
More at n→1 from the left
lim
n
→
1
+
(
3
n
3
1
−
n
)
=
3
\lim_{n \to 1^+}\left(3^{n} 3^{1 - n}\right) = 3
n
→
1
+
lim
(
3
n
3
1
−
n
)
=
3
More at n→1 from the right
lim
n
→
−
∞
(
3
n
3
1
−
n
)
=
3
\lim_{n \to -\infty}\left(3^{n} 3^{1 - n}\right) = 3
n
→
−
∞
lim
(
3
n
3
1
−
n
)
=
3
More at n→-oo
The graph