Mister Exam

Other calculators:


3^n*3^(1-n)

Limit of the function 3^n*3^(1-n)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / n  1 - n\
 lim \3 *3     /
n->oo           
limn(3n31n)\lim_{n \to \infty}\left(3^{n} 3^{1 - n}\right)
Limit(3^n*3^(1 - n), n, oo, dir='-')
The graph
-0.010-0.008-0.006-0.004-0.0020.0100.0000.0020.0040.0060.0080.00
Rapid solution [src]
3
33
Other limits n→0, -oo, +oo, 1
limn(3n31n)=3\lim_{n \to \infty}\left(3^{n} 3^{1 - n}\right) = 3
limn0(3n31n)=3\lim_{n \to 0^-}\left(3^{n} 3^{1 - n}\right) = 3
More at n→0 from the left
limn0+(3n31n)=3\lim_{n \to 0^+}\left(3^{n} 3^{1 - n}\right) = 3
More at n→0 from the right
limn1(3n31n)=3\lim_{n \to 1^-}\left(3^{n} 3^{1 - n}\right) = 3
More at n→1 from the left
limn1+(3n31n)=3\lim_{n \to 1^+}\left(3^{n} 3^{1 - n}\right) = 3
More at n→1 from the right
limn(3n31n)=3\lim_{n \to -\infty}\left(3^{n} 3^{1 - n}\right) = 3
More at n→-oo
The graph
Limit of the function 3^n*3^(1-n)