We have indeterminateness of type
oo/oo,
i.e. limit for the numerator is
$$\lim_{n \to \infty} 3^{n} = \infty$$
and limit for the denominator is
$$\lim_{n \to \infty} n^{2} = \infty$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{n \to \infty}\left(\frac{3^{n}}{n^{2}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{d}{d n} 3^{n}}{\frac{d}{d n} n^{2}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{3^{n} \log{\left(3 \right)}}{2 n}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{d}{d n} \frac{3^{n} \log{\left(3 \right)}}{2}}{\frac{d}{d n} n}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{3^{n} \log{\left(3 \right)}^{2}}{2}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{d}{d n} \log{\left(3 \right)}^{2}}{\frac{d}{d n} 2 \cdot 3^{- n}}\right)$$
=
$$\lim_{n \to \infty} 0$$
=
$$\lim_{n \to \infty} 0$$
=
$$\infty$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 3 time(s)