Mister Exam

Other calculators:


3^n/n^2

Limit of the function 3^n/n^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / n\
     |3 |
 lim |--|
n->oo| 2|
     \n /
$$\lim_{n \to \infty}\left(\frac{3^{n}}{n^{2}}\right)$$
Limit(3^n/n^2, n, oo, dir='-')
Lopital's rule
We have indeterminateness of type
oo/oo,

i.e. limit for the numerator is
$$\lim_{n \to \infty} 3^{n} = \infty$$
and limit for the denominator is
$$\lim_{n \to \infty} n^{2} = \infty$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{n \to \infty}\left(\frac{3^{n}}{n^{2}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{d}{d n} 3^{n}}{\frac{d}{d n} n^{2}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{3^{n} \log{\left(3 \right)}}{2 n}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{d}{d n} \frac{3^{n} \log{\left(3 \right)}}{2}}{\frac{d}{d n} n}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{3^{n} \log{\left(3 \right)}^{2}}{2}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{d}{d n} \log{\left(3 \right)}^{2}}{\frac{d}{d n} 2 \cdot 3^{- n}}\right)$$
=
$$\lim_{n \to \infty} 0$$
=
$$\lim_{n \to \infty} 0$$
=
$$\infty$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 3 time(s)
The graph
Rapid solution [src]
oo
$$\infty$$
Other limits n→0, -oo, +oo, 1
$$\lim_{n \to \infty}\left(\frac{3^{n}}{n^{2}}\right) = \infty$$
$$\lim_{n \to 0^-}\left(\frac{3^{n}}{n^{2}}\right) = \infty$$
More at n→0 from the left
$$\lim_{n \to 0^+}\left(\frac{3^{n}}{n^{2}}\right) = \infty$$
More at n→0 from the right
$$\lim_{n \to 1^-}\left(\frac{3^{n}}{n^{2}}\right) = 3$$
More at n→1 from the left
$$\lim_{n \to 1^+}\left(\frac{3^{n}}{n^{2}}\right) = 3$$
More at n→1 from the right
$$\lim_{n \to -\infty}\left(\frac{3^{n}}{n^{2}}\right) = 0$$
More at n→-oo
The graph
Limit of the function 3^n/n^2