Mister Exam

Other calculators:


3^(-x)

Limit of the function 3^(-x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      -x
 lim 3  
x->2+   
$$\lim_{x \to 2^+} 3^{- x}$$
Limit(3^(-x), x, 2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
      -x
 lim 3  
x->2+   
$$\lim_{x \to 2^+} 3^{- x}$$
1/9
$$\frac{1}{9}$$
= 0.111111111111111
      -x
 lim 3  
x->2-   
$$\lim_{x \to 2^-} 3^{- x}$$
1/9
$$\frac{1}{9}$$
= 0.111111111111111
= 0.111111111111111
Rapid solution [src]
1/9
$$\frac{1}{9}$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 2^-} 3^{- x} = \frac{1}{9}$$
More at x→2 from the left
$$\lim_{x \to 2^+} 3^{- x} = \frac{1}{9}$$
$$\lim_{x \to \infty} 3^{- x} = 0$$
More at x→oo
$$\lim_{x \to 0^-} 3^{- x} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} 3^{- x} = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-} 3^{- x} = \frac{1}{3}$$
More at x→1 from the left
$$\lim_{x \to 1^+} 3^{- x} = \frac{1}{3}$$
More at x→1 from the right
$$\lim_{x \to -\infty} 3^{- x} = \infty$$
More at x→-oo
Numerical answer [src]
0.111111111111111
0.111111111111111
The graph
Limit of the function 3^(-x)