Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (5+x-3*x^2)/(4-x+2*x^2)
Limit of (4-x^2)/(3-x^2)
Limit of (3+2*x)/(1-5*x)
Limit of (1-2*cos(x))/sin(3*x)
Integral of d{x}
:
3^(-x)
Graphing y =
:
3^(-x)
Identical expressions
three ^(-x)
3 to the power of ( minus x)
three to the power of ( minus x)
3(-x)
3-x
3^-x
Similar expressions
sin(2*pi*3^(-x))
(-2+3^x+3^(-x))/x^2
2/3-3^(-x)-2^x/3
3^(x)
(3^x-3^(-x))/(3^x+3^(-x))
Limit of the function
/
3^(-x)
Limit of the function 3^(-x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
-x lim 3 x->2+
$$\lim_{x \to 2^+} 3^{- x}$$
Limit(3^(-x), x, 2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
One‐sided limits
[src]
-x lim 3 x->2+
$$\lim_{x \to 2^+} 3^{- x}$$
1/9
$$\frac{1}{9}$$
= 0.111111111111111
-x lim 3 x->2-
$$\lim_{x \to 2^-} 3^{- x}$$
1/9
$$\frac{1}{9}$$
= 0.111111111111111
= 0.111111111111111
Rapid solution
[src]
1/9
$$\frac{1}{9}$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 2^-} 3^{- x} = \frac{1}{9}$$
More at x→2 from the left
$$\lim_{x \to 2^+} 3^{- x} = \frac{1}{9}$$
$$\lim_{x \to \infty} 3^{- x} = 0$$
More at x→oo
$$\lim_{x \to 0^-} 3^{- x} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} 3^{- x} = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-} 3^{- x} = \frac{1}{3}$$
More at x→1 from the left
$$\lim_{x \to 1^+} 3^{- x} = \frac{1}{3}$$
More at x→1 from the right
$$\lim_{x \to -\infty} 3^{- x} = \infty$$
More at x→-oo
Numerical answer
[src]
0.111111111111111
0.111111111111111
The graph