Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (1+3*x)^(5/x)
Limit of (-16+x^2+6*x)/(-2-5*x+3*x^2)
Limit of (1+x)^(2/3)-(-1+x)^(2/3)
Limit of e^(1+3*x)*(-1+x)
Sum of series
:
3^(-n)
Identical expressions
three ^(-n)
3 to the power of ( minus n)
three to the power of ( minus n)
3(-n)
3-n
3^-n
Similar expressions
x*3^(-n)*sin(3^n)
2*n*3^(-n)
n*3^(-n)*sin(3^n)
3^(n)
3^(-n)*(1+n)
Limit of the function
/
3^(-n)
Limit of the function 3^(-n)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
-n lim 3 n->oo
$$\lim_{n \to \infty} 3^{- n}$$
Limit(3^(-n), n, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
0
$$0$$
Expand and simplify
Other limits n→0, -oo, +oo, 1
$$\lim_{n \to \infty} 3^{- n} = 0$$
$$\lim_{n \to 0^-} 3^{- n} = 1$$
More at n→0 from the left
$$\lim_{n \to 0^+} 3^{- n} = 1$$
More at n→0 from the right
$$\lim_{n \to 1^-} 3^{- n} = \frac{1}{3}$$
More at n→1 from the left
$$\lim_{n \to 1^+} 3^{- n} = \frac{1}{3}$$
More at n→1 from the right
$$\lim_{n \to -\infty} 3^{- n} = \infty$$
More at n→-oo
The graph