Let's take the limit
$$\lim_{x \to \frac{1}{2}^+}\left(\frac{2 x + 3}{4 x + 2}\right)$$
transform
$$\lim_{x \to \frac{1}{2}^+}\left(\frac{2 x + 3}{4 x + 2}\right)$$
=
$$\lim_{x \to \frac{1}{2}^+}\left(\frac{2 x + 3}{4 x + 2}\right)$$
=
$$\lim_{x \to \frac{1}{2}^+}\left(\frac{2 x + 3}{2 \left(2 x + 1\right)}\right) = $$
$$\frac{\frac{2}{2} + 3}{2 \left(1 + \frac{2}{2}\right)} = $$
= 1
The final answer:
$$\lim_{x \to \frac{1}{2}^+}\left(\frac{2 x + 3}{4 x + 2}\right) = 1$$