Mister Exam

Other calculators:


(3+2*x)/(2+4*x)

Limit of the function (3+2*x)/(2+4*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
       /3 + 2*x\
  lim  |-------|
x->1/2+\2 + 4*x/
$$\lim_{x \to \frac{1}{2}^+}\left(\frac{2 x + 3}{4 x + 2}\right)$$
Limit((3 + 2*x)/(2 + 4*x), x, 1/2)
Detail solution
Let's take the limit
$$\lim_{x \to \frac{1}{2}^+}\left(\frac{2 x + 3}{4 x + 2}\right)$$
transform
$$\lim_{x \to \frac{1}{2}^+}\left(\frac{2 x + 3}{4 x + 2}\right)$$
=
$$\lim_{x \to \frac{1}{2}^+}\left(\frac{2 x + 3}{4 x + 2}\right)$$
=
$$\lim_{x \to \frac{1}{2}^+}\left(\frac{2 x + 3}{2 \left(2 x + 1\right)}\right) = $$
$$\frac{\frac{2}{2} + 3}{2 \left(1 + \frac{2}{2}\right)} = $$
= 1

The final answer:
$$\lim_{x \to \frac{1}{2}^+}\left(\frac{2 x + 3}{4 x + 2}\right) = 1$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \frac{1}{2}^-}\left(\frac{2 x + 3}{4 x + 2}\right) = 1$$
More at x→1/2 from the left
$$\lim_{x \to \frac{1}{2}^+}\left(\frac{2 x + 3}{4 x + 2}\right) = 1$$
$$\lim_{x \to \infty}\left(\frac{2 x + 3}{4 x + 2}\right) = \frac{1}{2}$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{2 x + 3}{4 x + 2}\right) = \frac{3}{2}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{2 x + 3}{4 x + 2}\right) = \frac{3}{2}$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{2 x + 3}{4 x + 2}\right) = \frac{5}{6}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{2 x + 3}{4 x + 2}\right) = \frac{5}{6}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{2 x + 3}{4 x + 2}\right) = \frac{1}{2}$$
More at x→-oo
One‐sided limits [src]
       /3 + 2*x\
  lim  |-------|
x->1/2+\2 + 4*x/
$$\lim_{x \to \frac{1}{2}^+}\left(\frac{2 x + 3}{4 x + 2}\right)$$
1
$$1$$
= 1.0
       /3 + 2*x\
  lim  |-------|
x->1/2-\2 + 4*x/
$$\lim_{x \to \frac{1}{2}^-}\left(\frac{2 x + 3}{4 x + 2}\right)$$
1
$$1$$
= 1.0
= 1.0
Rapid solution [src]
1
$$1$$
Numerical answer [src]
1.0
1.0
The graph
Limit of the function (3+2*x)/(2+4*x)