Mister Exam

Other calculators:


3*x

Limit of the function 3*x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim  (3*x)
x->-oo     
$$\lim_{x \to -\infty}\left(3 x\right)$$
Limit(3*x, x, -oo)
Detail solution
Let's take the limit
$$\lim_{x \to -\infty}\left(3 x\right)$$
Let's divide numerator and denominator by x:
$$\lim_{x \to -\infty}\left(3 x\right)$$ =
$$\lim_{x \to -\infty} \frac{1}{\frac{1}{3} \frac{1}{x}}$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to -\infty} \frac{1}{\frac{1}{3} \frac{1}{x}} = \lim_{u \to 0^+}\left(\frac{3}{u}\right)$$
=
$$\frac{3}{0} = -\infty$$

The final answer:
$$\lim_{x \to -\infty}\left(3 x\right) = -\infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
-oo
$$-\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -\infty}\left(3 x\right) = -\infty$$
$$\lim_{x \to \infty}\left(3 x\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(3 x\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(3 x\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(3 x\right) = 3$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(3 x\right) = 3$$
More at x→1 from the right
The graph
Limit of the function 3*x