Mister Exam

Other calculators:


3*tan(x)

Limit of the function 3*tan(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim  (3*tan(x))
   pi           
x->--+          
   2            
$$\lim_{x \to \frac{\pi}{2}^+}\left(3 \tan{\left(x \right)}\right)$$
Limit(3*tan(x), x, pi/2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
 lim  (3*tan(x))
   pi           
x->--+          
   2            
$$\lim_{x \to \frac{\pi}{2}^+}\left(3 \tan{\left(x \right)}\right)$$
-oo
$$-\infty$$
= -452.993377464085
 lim  (3*tan(x))
   pi           
x->---          
   2            
$$\lim_{x \to \frac{\pi}{2}^-}\left(3 \tan{\left(x \right)}\right)$$
oo
$$\infty$$
= 452.993377464076
= 452.993377464076
Rapid solution [src]
-oo
$$-\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \frac{\pi}{2}^-}\left(3 \tan{\left(x \right)}\right) = -\infty$$
More at x→pi/2 from the left
$$\lim_{x \to \frac{\pi}{2}^+}\left(3 \tan{\left(x \right)}\right) = -\infty$$
$$\lim_{x \to \infty}\left(3 \tan{\left(x \right)}\right)$$
More at x→oo
$$\lim_{x \to 0^-}\left(3 \tan{\left(x \right)}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(3 \tan{\left(x \right)}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(3 \tan{\left(x \right)}\right) = 3 \tan{\left(1 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(3 \tan{\left(x \right)}\right) = 3 \tan{\left(1 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(3 \tan{\left(x \right)}\right)$$
More at x→-oo
Numerical answer [src]
-452.993377464085
-452.993377464085
The graph
Limit of the function 3*tan(x)