Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-1+3*x)/(5+x^2+7*x)
Limit of (7+x+x^2)/(-1+e^x)
Limit of x^2/(-2+sqrt(4+x^2))
Limit of ((-2+x)/(1+3*x))^(5*x)
Derivative of
:
3*sqrt(x)
Integral of d{x}
:
3*sqrt(x)
Identical expressions
three *sqrt(x)
3 multiply by square root of (x)
three multiply by square root of (x)
3*√(x)
3sqrt(x)
3sqrtx
Similar expressions
sqrt(3)*sqrt(x)
Limit of the function
/
3*sqrt(x)
Limit of the function 3*sqrt(x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ ___\ lim \3*\/ x / x->oo
$$\lim_{x \to \infty}\left(3 \sqrt{x}\right)$$
Limit(3*sqrt(x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(3 \sqrt{x}\right) = \infty$$
$$\lim_{x \to 0^-}\left(3 \sqrt{x}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(3 \sqrt{x}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(3 \sqrt{x}\right) = 3$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(3 \sqrt{x}\right) = 3$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(3 \sqrt{x}\right) = \infty i$$
More at x→-oo
The graph