Mister Exam

Other calculators:


3*cos(3*x)

Limit of the function 3*cos(3*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim  (3*cos(3*x))
   pi             
x->--+            
   2              
$$\lim_{x \to \frac{\pi}{2}^+}\left(3 \cos{\left(3 x \right)}\right)$$
Limit(3*cos(3*x), x, pi/2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \frac{\pi}{2}^-}\left(3 \cos{\left(3 x \right)}\right) = 0$$
More at x→pi/2 from the left
$$\lim_{x \to \frac{\pi}{2}^+}\left(3 \cos{\left(3 x \right)}\right) = 0$$
$$\lim_{x \to \infty}\left(3 \cos{\left(3 x \right)}\right) = \left\langle -3, 3\right\rangle$$
More at x→oo
$$\lim_{x \to 0^-}\left(3 \cos{\left(3 x \right)}\right) = 3$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(3 \cos{\left(3 x \right)}\right) = 3$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(3 \cos{\left(3 x \right)}\right) = 3 \cos{\left(3 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(3 \cos{\left(3 x \right)}\right) = 3 \cos{\left(3 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(3 \cos{\left(3 x \right)}\right) = \left\langle -3, 3\right\rangle$$
More at x→-oo
One‐sided limits [src]
 lim  (3*cos(3*x))
   pi             
x->--+            
   2              
$$\lim_{x \to \frac{\pi}{2}^+}\left(3 \cos{\left(3 x \right)}\right)$$
0
$$0$$
= -5.51091059616303e-16
 lim  (3*cos(3*x))
   pi             
x->---            
   2              
$$\lim_{x \to \frac{\pi}{2}^-}\left(3 \cos{\left(3 x \right)}\right)$$
0
$$0$$
= -5.51091059616315e-16
= -5.51091059616315e-16
Rapid solution [src]
0
$$0$$
Numerical answer [src]
-5.51091059616303e-16
-5.51091059616303e-16
The graph
Limit of the function 3*cos(3*x)