$$\lim_{x \to \frac{\pi}{2}^-}\left(3 \cos{\left(3 x \right)}\right) = 0$$
More at x→pi/2 from the left$$\lim_{x \to \frac{\pi}{2}^+}\left(3 \cos{\left(3 x \right)}\right) = 0$$
$$\lim_{x \to \infty}\left(3 \cos{\left(3 x \right)}\right) = \left\langle -3, 3\right\rangle$$
More at x→oo$$\lim_{x \to 0^-}\left(3 \cos{\left(3 x \right)}\right) = 3$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(3 \cos{\left(3 x \right)}\right) = 3$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(3 \cos{\left(3 x \right)}\right) = 3 \cos{\left(3 \right)}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(3 \cos{\left(3 x \right)}\right) = 3 \cos{\left(3 \right)}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(3 \cos{\left(3 x \right)}\right) = \left\langle -3, 3\right\rangle$$
More at x→-oo