Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of 10+x^2+3*x^3+8*x
Limit of (-2+sqrt(x))/(-4+x^2)
Limit of x+2*x^3+5*x^4-x^2/3
Limit of (-x^3+2*x+5*x^4)/(1+x^4-8*x^3)
Graphing y =
:
3-3*x
Identical expressions
three - three *x
3 minus 3 multiply by x
three minus three multiply by x
3-3x
Similar expressions
(x^3-3^x)/(-3+x)
3+3*x
Limit of the function
/
3-3*x
Limit of the function 3-3*x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim (3 - 3*x) x->oo
$$\lim_{x \to \infty}\left(3 - 3 x\right)$$
Limit(3 - 3*x, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(3 - 3 x\right)$$
Let's divide numerator and denominator by x:
$$\lim_{x \to \infty}\left(3 - 3 x\right)$$ =
$$\lim_{x \to \infty}\left(\frac{-3 + \frac{3}{x}}{\frac{1}{x}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{-3 + \frac{3}{x}}{\frac{1}{x}}\right) = \lim_{u \to 0^+}\left(\frac{3 u - 3}{u}\right)$$
=
$$\frac{-3 + 0 \cdot 3}{0} = -\infty$$
The final answer:
$$\lim_{x \to \infty}\left(3 - 3 x\right) = -\infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
-oo
$$-\infty$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(3 - 3 x\right) = -\infty$$
$$\lim_{x \to 0^-}\left(3 - 3 x\right) = 3$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(3 - 3 x\right) = 3$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(3 - 3 x\right) = 0$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(3 - 3 x\right) = 0$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(3 - 3 x\right) = \infty$$
More at x→-oo
The graph