Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of ((2+x)/(4+x))^cos(x)
Limit of -5-2*x^2+8*x
Limit of (-9+x^2)/(-27+x^3)
Limit of 1+7*x+11*x^2/2
Derivative of
:
3-5*x
Identical expressions
three - five *x
3 minus 5 multiply by x
three minus five multiply by x
3-5x
Similar expressions
3+5*x
Limit of the function
/
3-5*x
Limit of the function 3-5*x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim (3 - 5*x) x->oo
$$\lim_{x \to \infty}\left(3 - 5 x\right)$$
Limit(3 - 5*x, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(3 - 5 x\right)$$
Let's divide numerator and denominator by x:
$$\lim_{x \to \infty}\left(3 - 5 x\right)$$ =
$$\lim_{x \to \infty}\left(\frac{-5 + \frac{3}{x}}{\frac{1}{x}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{-5 + \frac{3}{x}}{\frac{1}{x}}\right) = \lim_{u \to 0^+}\left(\frac{3 u - 5}{u}\right)$$
=
$$\frac{-5 + 3 \cdot 0}{0} = -\infty$$
The final answer:
$$\lim_{x \to \infty}\left(3 - 5 x\right) = -\infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
-oo
$$-\infty$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(3 - 5 x\right) = -\infty$$
$$\lim_{x \to 0^-}\left(3 - 5 x\right) = 3$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(3 - 5 x\right) = 3$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(3 - 5 x\right) = -2$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(3 - 5 x\right) = -2$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(3 - 5 x\right) = \infty$$
More at x→-oo
The graph