Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (4-x^2)/(3-x^2)
Limit of (-2+x^2-x)/(-2+x+3*x^2)
Limit of 5-9*x+3*x^2/2
Limit of (-16+x^2)/(-64+x^3)
Integral of d{x}
:
3/2
Derivative of
:
3/2
3/2
Identical expressions
three / two
3 divide by 2
three divide by two
Similar expressions
(3-3*x^2+4*x^4+6*x^3)/(2*x^2+7*x^4)
(-1+x+5*x^3)/(2*x^3+5*x^2)
Limit of the function
/
3/2
Limit of the function 3/2
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim (3/2) x->0+
$$\lim_{x \to 0^+} \frac{3}{2}$$
Limit(3/2, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \frac{3}{2} = \frac{3}{2}$$
More at x→0 from the left
$$\lim_{x \to 0^+} \frac{3}{2} = \frac{3}{2}$$
$$\lim_{x \to \infty} \frac{3}{2} = \frac{3}{2}$$
More at x→oo
$$\lim_{x \to 1^-} \frac{3}{2} = \frac{3}{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \frac{3}{2} = \frac{3}{2}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \frac{3}{2} = \frac{3}{2}$$
More at x→-oo
Rapid solution
[src]
3/2
$$\frac{3}{2}$$
Expand and simplify
One‐sided limits
[src]
lim (3/2) x->0+
$$\lim_{x \to 0^+} \frac{3}{2}$$
3/2
$$\frac{3}{2}$$
= 1.5
lim (3/2) x->0-
$$\lim_{x \to 0^-} \frac{3}{2}$$
3/2
$$\frac{3}{2}$$
= 1.5
= 1.5
Numerical answer
[src]
1.5
1.5
The graph