Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of -7+x^2-4*x-2*x^3
Limit of (x^2+10*x)/tan(5*x)
Limit of ((1+x)/(2+x))^(1+x)
Limit of ((-1+x)/(5+4*x))^(3*x)
Sum of series
:
(3/4)^n
Identical expressions
(three / four)^n
(3 divide by 4) to the power of n
(three divide by four) to the power of n
(3/4)n
3/4n
3/4^n
(3 divide by 4)^n
Limit of the function
/
(3/4)^n
Limit of the function (3/4)^n
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
n lim 3/4 n->oo
lim
n
→
∞
(
3
4
)
n
\lim_{n \to \infty} \left(\frac{3}{4}\right)^{n}
n
→
∞
lim
(
4
3
)
n
Limit((3/4)^n, n, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
0
20
Plot the graph
Rapid solution
[src]
0
0
0
0
Expand and simplify
Other limits n→0, -oo, +oo, 1
lim
n
→
∞
(
3
4
)
n
=
0
\lim_{n \to \infty} \left(\frac{3}{4}\right)^{n} = 0
n
→
∞
lim
(
4
3
)
n
=
0
lim
n
→
0
−
(
3
4
)
n
=
1
\lim_{n \to 0^-} \left(\frac{3}{4}\right)^{n} = 1
n
→
0
−
lim
(
4
3
)
n
=
1
More at n→0 from the left
lim
n
→
0
+
(
3
4
)
n
=
1
\lim_{n \to 0^+} \left(\frac{3}{4}\right)^{n} = 1
n
→
0
+
lim
(
4
3
)
n
=
1
More at n→0 from the right
lim
n
→
1
−
(
3
4
)
n
=
3
4
\lim_{n \to 1^-} \left(\frac{3}{4}\right)^{n} = \frac{3}{4}
n
→
1
−
lim
(
4
3
)
n
=
4
3
More at n→1 from the left
lim
n
→
1
+
(
3
4
)
n
=
3
4
\lim_{n \to 1^+} \left(\frac{3}{4}\right)^{n} = \frac{3}{4}
n
→
1
+
lim
(
4
3
)
n
=
4
3
More at n→1 from the right
lim
n
→
−
∞
(
3
4
)
n
=
∞
\lim_{n \to -\infty} \left(\frac{3}{4}\right)^{n} = \infty
n
→
−
∞
lim
(
4
3
)
n
=
∞
More at n→-oo
The graph