Mister Exam

Other calculators:


(3/4)^n

Limit of the function (3/4)^n

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        n
 lim 3/4 
n->oo    
limn(34)n\lim_{n \to \infty} \left(\frac{3}{4}\right)^{n}
Limit((3/4)^n, n, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010020
Rapid solution [src]
0
00
Other limits n→0, -oo, +oo, 1
limn(34)n=0\lim_{n \to \infty} \left(\frac{3}{4}\right)^{n} = 0
limn0(34)n=1\lim_{n \to 0^-} \left(\frac{3}{4}\right)^{n} = 1
More at n→0 from the left
limn0+(34)n=1\lim_{n \to 0^+} \left(\frac{3}{4}\right)^{n} = 1
More at n→0 from the right
limn1(34)n=34\lim_{n \to 1^-} \left(\frac{3}{4}\right)^{n} = \frac{3}{4}
More at n→1 from the left
limn1+(34)n=34\lim_{n \to 1^+} \left(\frac{3}{4}\right)^{n} = \frac{3}{4}
More at n→1 from the right
limn(34)n=\lim_{n \to -\infty} \left(\frac{3}{4}\right)^{n} = \infty
More at n→-oo
The graph
Limit of the function (3/4)^n