Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-3*e^(4*x)-2*e^(-x)+5*e^(2*x))/(-4*sqrt(1+5*x)+4*cos(3*x)+5*sin(2*x))
Limit of (2+x^2+3*x)/(2+2*x^2+5*x)
Limit of (-1+x)*cot(pi*(-1+x))
Limit of (9+x^10-10*x)/(-1+x)^2
Derivative of
:
30*x
30*x
Identical expressions
thirty *x
30 multiply by x
thirty multiply by x
30x
Limit of the function
/
30*x
Limit of the function 30*x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim (30*x) x->oo
$$\lim_{x \to \infty}\left(30 x\right)$$
Limit(30*x, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(30 x\right)$$
Let's divide numerator and denominator by x:
$$\lim_{x \to \infty}\left(30 x\right)$$ =
$$\lim_{x \to \infty} \frac{1}{\frac{1}{30} \frac{1}{x}}$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty} \frac{1}{\frac{1}{30} \frac{1}{x}} = \lim_{u \to 0^+}\left(\frac{30}{u}\right)$$
=
$$\frac{30}{0} = \infty$$
The final answer:
$$\lim_{x \to \infty}\left(30 x\right) = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(30 x\right) = \infty$$
$$\lim_{x \to 0^-}\left(30 x\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(30 x\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(30 x\right) = 30$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(30 x\right) = 30$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(30 x\right) = -\infty$$
More at x→-oo
The graph