Mister Exam

Other calculators:


10*x

Limit of the function 10*x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (10*x)
x->2+      
$$\lim_{x \to 2^+}\left(10 x\right)$$
Limit(10*x, x, 2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
20
$$20$$
One‐sided limits [src]
 lim (10*x)
x->2+      
$$\lim_{x \to 2^+}\left(10 x\right)$$
20
$$20$$
= 20.0
 lim (10*x)
x->2-      
$$\lim_{x \to 2^-}\left(10 x\right)$$
20
$$20$$
= 20.0
= 20.0
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 2^-}\left(10 x\right) = 20$$
More at x→2 from the left
$$\lim_{x \to 2^+}\left(10 x\right) = 20$$
$$\lim_{x \to \infty}\left(10 x\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(10 x\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(10 x\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(10 x\right) = 10$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(10 x\right) = 10$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(10 x\right) = -\infty$$
More at x→-oo
Numerical answer [src]
20.0
20.0
The graph
Limit of the function 10*x