Mister Exam

Other calculators:


tan(x/2)/tan(3*x)

Limit of the function tan(x/2)/tan(3*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /    /x\ \
     | tan|-| |
     |    \2/ |
 lim |--------|
x->oo\tan(3*x)/
$$\lim_{x \to \infty}\left(\frac{\tan{\left(\frac{x}{2} \right)}}{\tan{\left(3 x \right)}}\right)$$
Limit(tan(x/2)/tan(3*x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
     /    /x\ \
     | tan|-| |
     |    \2/ |
 lim |--------|
x->oo\tan(3*x)/
$$\lim_{x \to \infty}\left(\frac{\tan{\left(\frac{x}{2} \right)}}{\tan{\left(3 x \right)}}\right)$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{\tan{\left(\frac{x}{2} \right)}}{\tan{\left(3 x \right)}}\right)$$
$$\lim_{x \to 0^-}\left(\frac{\tan{\left(\frac{x}{2} \right)}}{\tan{\left(3 x \right)}}\right) = \frac{1}{6}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\tan{\left(\frac{x}{2} \right)}}{\tan{\left(3 x \right)}}\right) = \frac{1}{6}$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{\tan{\left(\frac{x}{2} \right)}}{\tan{\left(3 x \right)}}\right) = \frac{\tan{\left(\frac{1}{2} \right)}}{\tan{\left(3 \right)}}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\tan{\left(\frac{x}{2} \right)}}{\tan{\left(3 x \right)}}\right) = \frac{\tan{\left(\frac{1}{2} \right)}}{\tan{\left(3 \right)}}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\tan{\left(\frac{x}{2} \right)}}{\tan{\left(3 x \right)}}\right)$$
More at x→-oo
The graph
Limit of the function tan(x/2)/tan(3*x)