Mister Exam

Other calculators:


tan(2*x)

Limit of the function tan(2*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim  tan(2*x)
   pi         
x->--+        
   4          
$$\lim_{x \to \frac{\pi}{4}^+} \tan{\left(2 x \right)}$$
Limit(tan(2*x), x, pi/4)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
 lim  tan(2*x)
   pi         
x->--+        
   4          
$$\lim_{x \to \frac{\pi}{4}^+} \tan{\left(2 x \right)}$$
-oo
$$-\infty$$
= -75.4955849373267
 lim  tan(2*x)
   pi         
x->---        
   4          
$$\lim_{x \to \frac{\pi}{4}^-} \tan{\left(2 x \right)}$$
oo
$$\infty$$
= 75.495584937326
= 75.495584937326
Rapid solution [src]
-oo
$$-\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \frac{\pi}{4}^-} \tan{\left(2 x \right)} = -\infty$$
More at x→pi/4 from the left
$$\lim_{x \to \frac{\pi}{4}^+} \tan{\left(2 x \right)} = -\infty$$
$$\lim_{x \to \infty} \tan{\left(2 x \right)} = \left\langle -\infty, \infty\right\rangle$$
More at x→oo
$$\lim_{x \to 0^-} \tan{\left(2 x \right)} = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+} \tan{\left(2 x \right)} = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-} \tan{\left(2 x \right)} = \tan{\left(2 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \tan{\left(2 x \right)} = \tan{\left(2 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \tan{\left(2 x \right)} = \left\langle -\infty, \infty\right\rangle$$
More at x→-oo
Numerical answer [src]
-75.4955849373267
-75.4955849373267
The graph
Limit of the function tan(2*x)