$$\lim_{x \to 0^-} \tan{\left(\sin{\left(x \right)} \right)} = 0$$
More at x→0 from the left$$\lim_{x \to 0^+} \tan{\left(\sin{\left(x \right)} \right)} = 0$$
$$\lim_{x \to \infty} \tan{\left(\sin{\left(x \right)} \right)} = \left\langle - \tan{\left(1 \right)}, \tan{\left(1 \right)}\right\rangle$$
More at x→oo$$\lim_{x \to 1^-} \tan{\left(\sin{\left(x \right)} \right)} = \tan{\left(\sin{\left(1 \right)} \right)}$$
More at x→1 from the left$$\lim_{x \to 1^+} \tan{\left(\sin{\left(x \right)} \right)} = \tan{\left(\sin{\left(1 \right)} \right)}$$
More at x→1 from the right$$\lim_{x \to -\infty} \tan{\left(\sin{\left(x \right)} \right)} = \left\langle - \tan{\left(1 \right)}, \tan{\left(1 \right)}\right\rangle$$
More at x→-oo