Mister Exam

Other calculators:


tan(pi*x)/(-3+x)

You entered:

tan(pi*x)/(-3+x)

What you mean?

Limit of the function tan(pi*x)/(-3+x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /tan(pi*x)\
 lim |---------|
x->3+\  -3 + x /
$$\lim_{x \to 3^+}\left(\frac{\tan{\left(\pi x \right)}}{x - 3}\right)$$
Limit(tan(pi*x)/(-3 + x), x, 3)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 3^+} \tan{\left(\pi x \right)} = 0$$
and limit for the denominator is
$$\lim_{x \to 3^+}\left(x - 3\right) = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 3^+}\left(\frac{\tan{\left(\pi x \right)}}{x - 3}\right)$$
=
$$\lim_{x \to 3^+}\left(\frac{\frac{d}{d x} \tan{\left(\pi x \right)}}{\frac{d}{d x} \left(x - 3\right)}\right)$$
=
$$\lim_{x \to 3^+}\left(\pi \left(\tan^{2}{\left(\pi x \right)} + 1\right)\right)$$
=
$$\lim_{x \to 3^+} \pi$$
=
$$\lim_{x \to 3^+} \pi$$
=
$$\pi$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
One‐sided limits [src]
     /tan(pi*x)\
 lim |---------|
x->3+\  -3 + x /
$$\lim_{x \to 3^+}\left(\frac{\tan{\left(\pi x \right)}}{x - 3}\right)$$
pi
$$\pi$$
= 3.16744494160142
     /tan(pi*x)\
 lim |---------|
x->3-\  -3 + x /
$$\lim_{x \to 3^-}\left(\frac{\tan{\left(\pi x \right)}}{x - 3}\right)$$
pi
$$\pi$$
= 3.16744494160142
= 3.16744494160142
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 3^-}\left(\frac{\tan{\left(\pi x \right)}}{x - 3}\right) = \pi$$
More at x→3 from the left
$$\lim_{x \to 3^+}\left(\frac{\tan{\left(\pi x \right)}}{x - 3}\right) = \pi$$
$$\lim_{x \to \infty}\left(\frac{\tan{\left(\pi x \right)}}{x - 3}\right)$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{\tan{\left(\pi x \right)}}{x - 3}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\tan{\left(\pi x \right)}}{x - 3}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{\tan{\left(\pi x \right)}}{x - 3}\right) = 0$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\tan{\left(\pi x \right)}}{x - 3}\right) = 0$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\tan{\left(\pi x \right)}}{x - 3}\right)$$
More at x→-oo
Rapid solution [src]
pi
$$\pi$$
Numerical answer [src]
3.16744494160142
3.16744494160142
The graph
Limit of the function tan(pi*x)/(-3+x)