Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-1+3*x)/(5+x^2+7*x)
Limit of (7+x+x^2)/(-1+e^x)
Limit of ((-2+x)/(1+3*x))^(5*x)
Limit of (-tan(2*x)+sin(2*x))/x^3
Derivative of
:
sqrt(2-x)
Integral of d{x}
:
sqrt(2-x)
Graphing y =
:
sqrt(2-x)
Identical expressions
sqrt(two -x)
square root of (2 minus x)
square root of (two minus x)
√(2-x)
sqrt2-x
Similar expressions
-1+sqrt(5)-x-2/(sqrt(2)-x)
sqrt(2+x)
sqrt(2-x^2)
Limit of the function
/
sqrt(2-x)
Limit of the function sqrt(2-x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
_______ lim \/ 2 - x x->oo
$$\lim_{x \to \infty} \sqrt{2 - x}$$
Limit(sqrt(2 - x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
oo*I
$$\infty i$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \sqrt{2 - x} = \infty i$$
$$\lim_{x \to 0^-} \sqrt{2 - x} = \sqrt{2}$$
More at x→0 from the left
$$\lim_{x \to 0^+} \sqrt{2 - x} = \sqrt{2}$$
More at x→0 from the right
$$\lim_{x \to 1^-} \sqrt{2 - x} = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+} \sqrt{2 - x} = 1$$
More at x→1 from the right
$$\lim_{x \to -\infty} \sqrt{2 - x} = \infty$$
More at x→-oo
The graph