$$\lim_{x \to -\infty} \sqrt{\sin{\left(x \right)}} = \sqrt{\left\langle -1, 1\right\rangle}$$ $$\lim_{x \to \infty} \sqrt{\sin{\left(x \right)}} = \sqrt{\left\langle -1, 1\right\rangle}$$ More at x→oo $$\lim_{x \to 0^-} \sqrt{\sin{\left(x \right)}} = 0$$ More at x→0 from the left $$\lim_{x \to 0^+} \sqrt{\sin{\left(x \right)}} = 0$$ More at x→0 from the right $$\lim_{x \to 1^-} \sqrt{\sin{\left(x \right)}} = \sqrt{\sin{\left(1 \right)}}$$ More at x→1 from the left $$\lim_{x \to 1^+} \sqrt{\sin{\left(x \right)}} = \sqrt{\sin{\left(1 \right)}}$$ More at x→1 from the right