Mister Exam

Other calculators:


sqrt(sin(x))

Limit of the function sqrt(sin(x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        ________
 lim  \/ sin(x) 
x->-oo          
$$\lim_{x \to -\infty} \sqrt{\sin{\left(x \right)}}$$
Limit(sqrt(sin(x)), x, -oo)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
  _________
\/ <-1, 1> 
$$\sqrt{\left\langle -1, 1\right\rangle}$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -\infty} \sqrt{\sin{\left(x \right)}} = \sqrt{\left\langle -1, 1\right\rangle}$$
$$\lim_{x \to \infty} \sqrt{\sin{\left(x \right)}} = \sqrt{\left\langle -1, 1\right\rangle}$$
More at x→oo
$$\lim_{x \to 0^-} \sqrt{\sin{\left(x \right)}} = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+} \sqrt{\sin{\left(x \right)}} = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-} \sqrt{\sin{\left(x \right)}} = \sqrt{\sin{\left(1 \right)}}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \sqrt{\sin{\left(x \right)}} = \sqrt{\sin{\left(1 \right)}}$$
More at x→1 from the right
The graph
Limit of the function sqrt(sin(x))