Mister Exam

Other calculators:


sqrt(-8+3*x)

Limit of the function sqrt(-8+3*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
       __________
 lim \/ -8 + 3*x 
x->4+            
$$\lim_{x \to 4^+} \sqrt{3 x - 8}$$
Limit(sqrt(-8 + 3*x), x, 4)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
2
$$2$$
One‐sided limits [src]
       __________
 lim \/ -8 + 3*x 
x->4+            
$$\lim_{x \to 4^+} \sqrt{3 x - 8}$$
2
$$2$$
= 2.0
       __________
 lim \/ -8 + 3*x 
x->4-            
$$\lim_{x \to 4^-} \sqrt{3 x - 8}$$
2
$$2$$
= 2.0
= 2.0
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 4^-} \sqrt{3 x - 8} = 2$$
More at x→4 from the left
$$\lim_{x \to 4^+} \sqrt{3 x - 8} = 2$$
$$\lim_{x \to \infty} \sqrt{3 x - 8} = \infty$$
More at x→oo
$$\lim_{x \to 0^-} \sqrt{3 x - 8} = 2 \sqrt{2} i$$
More at x→0 from the left
$$\lim_{x \to 0^+} \sqrt{3 x - 8} = 2 \sqrt{2} i$$
More at x→0 from the right
$$\lim_{x \to 1^-} \sqrt{3 x - 8} = \sqrt{5} i$$
More at x→1 from the left
$$\lim_{x \to 1^+} \sqrt{3 x - 8} = \sqrt{5} i$$
More at x→1 from the right
$$\lim_{x \to -\infty} \sqrt{3 x - 8} = \infty i$$
More at x→-oo
Numerical answer [src]
2.0
2.0
The graph
Limit of the function sqrt(-8+3*x)