Mister Exam

Other calculators:


sqrt(4-2*x)

Limit of the function sqrt(4-2*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
       _________
 lim \/ 4 - 2*x 
x->2+           
$$\lim_{x \to 2^+} \sqrt{4 - 2 x}$$
Limit(sqrt(4 - 2*x), x, 2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 2^-} \sqrt{4 - 2 x} = 0$$
More at x→2 from the left
$$\lim_{x \to 2^+} \sqrt{4 - 2 x} = 0$$
$$\lim_{x \to \infty} \sqrt{4 - 2 x} = \infty i$$
More at x→oo
$$\lim_{x \to 0^-} \sqrt{4 - 2 x} = 2$$
More at x→0 from the left
$$\lim_{x \to 0^+} \sqrt{4 - 2 x} = 2$$
More at x→0 from the right
$$\lim_{x \to 1^-} \sqrt{4 - 2 x} = \sqrt{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \sqrt{4 - 2 x} = \sqrt{2}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \sqrt{4 - 2 x} = \infty$$
More at x→-oo
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
       _________
 lim \/ 4 - 2*x 
x->2+           
$$\lim_{x \to 2^+} \sqrt{4 - 2 x}$$
0
$$0$$
= (0.0 + 0.0199956290562172j)
       _________
 lim \/ 4 - 2*x 
x->2-           
$$\lim_{x \to 2^-} \sqrt{4 - 2 x}$$
0
$$0$$
= 0.0198820998757912
= 0.0198820998757912
Numerical answer [src]
(0.0 + 0.0199956290562172j)
(0.0 + 0.0199956290562172j)
The graph
Limit of the function sqrt(4-2*x)