Mister Exam

Other calculators:


(sqrt(5+x)-sqrt(2)*sqrt(x))/(sqrt(3+x)-sqrt(13-x))

Limit of the function (sqrt(5+x)-sqrt(2)*sqrt(x))/(sqrt(3+x)-sqrt(13-x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /  _______     ___   ___\
     |\/ 5 + x  - \/ 2 *\/ x |
 lim |-----------------------|
x->5+|   _______     ________|
     \ \/ 3 + x  - \/ 13 - x /
$$\lim_{x \to 5^+}\left(\frac{- \sqrt{2} \sqrt{x} + \sqrt{x + 5}}{- \sqrt{13 - x} + \sqrt{x + 3}}\right)$$
Limit((sqrt(5 + x) - sqrt(2)*sqrt(x))/(sqrt(3 + x) - sqrt(13 - x)), x, 5)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 5^+}\left(- \sqrt{2} \sqrt{x} + \sqrt{x + 5}\right) = 0$$
and limit for the denominator is
$$\lim_{x \to 5^+}\left(- \sqrt{13 - x} + \sqrt{x + 3}\right) = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 5^+}\left(\frac{- \sqrt{2} \sqrt{x} + \sqrt{x + 5}}{- \sqrt{13 - x} + \sqrt{x + 3}}\right)$$
=
$$\lim_{x \to 5^+}\left(\frac{\frac{d}{d x} \left(- \sqrt{2} \sqrt{x} + \sqrt{x + 5}\right)}{\frac{d}{d x} \left(- \sqrt{13 - x} + \sqrt{x + 3}\right)}\right)$$
=
$$\lim_{x \to 5^+}\left(\frac{\frac{1}{2 \sqrt{x + 5}} - \frac{\sqrt{2}}{2 \sqrt{x}}}{\frac{1}{2 \sqrt{x + 3}} + \frac{1}{2 \sqrt{13 - x}}}\right)$$
=
$$\lim_{x \to 5^+}\left(\frac{\frac{1}{2 \sqrt{x + 5}} - \frac{\sqrt{2}}{2 \sqrt{x}}}{\frac{1}{2 \sqrt{x + 3}} + \frac{1}{2 \sqrt{13 - x}}}\right)$$
=
$$- \frac{\sqrt{5}}{5}$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
   ___ 
-\/ 5  
-------
   5   
$$- \frac{\sqrt{5}}{5}$$
One‐sided limits [src]
     /  _______     ___   ___\
     |\/ 5 + x  - \/ 2 *\/ x |
 lim |-----------------------|
x->5+|   _______     ________|
     \ \/ 3 + x  - \/ 13 - x /
$$\lim_{x \to 5^+}\left(\frac{- \sqrt{2} \sqrt{x} + \sqrt{x + 5}}{- \sqrt{13 - x} + \sqrt{x + 3}}\right)$$
   ___ 
-\/ 5  
-------
   5   
$$- \frac{\sqrt{5}}{5}$$
= -0.447213595499958
     /  _______     ___   ___\
     |\/ 5 + x  - \/ 2 *\/ x |
 lim |-----------------------|
x->5-|   _______     ________|
     \ \/ 3 + x  - \/ 13 - x /
$$\lim_{x \to 5^-}\left(\frac{- \sqrt{2} \sqrt{x} + \sqrt{x + 5}}{- \sqrt{13 - x} + \sqrt{x + 3}}\right)$$
   ___ 
-\/ 5  
-------
   5   
$$- \frac{\sqrt{5}}{5}$$
= -0.447213595499958
= -0.447213595499958
Numerical answer [src]
-0.447213595499958
-0.447213595499958
The graph
Limit of the function (sqrt(5+x)-sqrt(2)*sqrt(x))/(sqrt(3+x)-sqrt(13-x))