Mister Exam

Other calculators:


sqrt(cos(2*x))

Limit of the function sqrt(cos(2*x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
       __________
 lim \/ cos(2*x) 
x->0+            
$$\lim_{x \to 0^+} \sqrt{\cos{\left(2 x \right)}}$$
Limit(sqrt(cos(2*x)), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
       __________
 lim \/ cos(2*x) 
x->0+            
$$\lim_{x \to 0^+} \sqrt{\cos{\left(2 x \right)}}$$
1
$$1$$
= 1.0
       __________
 lim \/ cos(2*x) 
x->0-            
$$\lim_{x \to 0^-} \sqrt{\cos{\left(2 x \right)}}$$
1
$$1$$
= 1.0
= 1.0
Rapid solution [src]
1
$$1$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \sqrt{\cos{\left(2 x \right)}} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} \sqrt{\cos{\left(2 x \right)}} = 1$$
$$\lim_{x \to \infty} \sqrt{\cos{\left(2 x \right)}} = \left\langle 0, 1\right\rangle$$
More at x→oo
$$\lim_{x \to 1^-} \sqrt{\cos{\left(2 x \right)}} = \sqrt{\cos{\left(2 \right)}}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \sqrt{\cos{\left(2 x \right)}} = \sqrt{\cos{\left(2 \right)}}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \sqrt{\cos{\left(2 x \right)}} = \left\langle 0, 1\right\rangle$$
More at x→-oo
Numerical answer [src]
1.0
1.0
The graph
Limit of the function sqrt(cos(2*x))