Mister Exam

Other calculators:


16/x

Limit of the function 16/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /16\
 lim |--|
x->oo\x /
$$\lim_{x \to \infty}\left(\frac{16}{x}\right)$$
Limit(16/x, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(\frac{16}{x}\right)$$
Let's divide numerator and denominator by x:
$$\lim_{x \to \infty}\left(\frac{16}{x}\right)$$ =
$$\lim_{x \to \infty}\left(\frac{16 \frac{1}{x}}{1}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{16 \frac{1}{x}}{1}\right) = \lim_{u \to 0^+}\left(16 u\right)$$
=
$$0 \cdot 16 = 0$$

The final answer:
$$\lim_{x \to \infty}\left(\frac{16}{x}\right) = 0$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{16}{x}\right) = 0$$
$$\lim_{x \to 0^-}\left(\frac{16}{x}\right) = -\infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{16}{x}\right) = \infty$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{16}{x}\right) = 16$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{16}{x}\right) = 16$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{16}{x}\right) = 0$$
More at x→-oo
The graph
Limit of the function 16/x