$$\lim_{x \to 3^-}\left(\frac{3 x}{2} + 6\right) = \frac{21}{2}$$ More at x→3 from the left $$\lim_{x \to 3^+}\left(\frac{3 x}{2} + 6\right) = \frac{21}{2}$$ $$\lim_{x \to \infty}\left(\frac{3 x}{2} + 6\right) = \infty$$ More at x→oo $$\lim_{x \to 0^-}\left(\frac{3 x}{2} + 6\right) = 6$$ More at x→0 from the left $$\lim_{x \to 0^+}\left(\frac{3 x}{2} + 6\right) = 6$$ More at x→0 from the right $$\lim_{x \to 1^-}\left(\frac{3 x}{2} + 6\right) = \frac{15}{2}$$ More at x→1 from the left $$\lim_{x \to 1^+}\left(\frac{3 x}{2} + 6\right) = \frac{15}{2}$$ More at x→1 from the right $$\lim_{x \to -\infty}\left(\frac{3 x}{2} + 6\right) = -\infty$$ More at x→-oo