Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-exp(-x)-2*x+exp(x))/(x-sin(x))
Limit of 1-6*x-x^2/3
Limit of -2/(-1+x)+2*e^(-1+x)
Limit of (-1+x^3-2*x)/(-1+x^5-2*x)
Identical expressions
six / five
6 divide by 5
six divide by five
Limit of the function
/
6/5
Limit of the function 6/5
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim (6/5) x->oo
lim
x
→
∞
6
5
\lim_{x \to \infty} \frac{6}{5}
x
→
∞
lim
5
6
Limit(6/5, x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-0.010
-0.008
-0.006
-0.004
-0.002
0.010
0.000
0.002
0.004
0.006
0.008
0.00
Plot the graph
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
6
5
=
6
5
\lim_{x \to \infty} \frac{6}{5} = \frac{6}{5}
x
→
∞
lim
5
6
=
5
6
lim
x
→
0
−
6
5
=
6
5
\lim_{x \to 0^-} \frac{6}{5} = \frac{6}{5}
x
→
0
−
lim
5
6
=
5
6
More at x→0 from the left
lim
x
→
0
+
6
5
=
6
5
\lim_{x \to 0^+} \frac{6}{5} = \frac{6}{5}
x
→
0
+
lim
5
6
=
5
6
More at x→0 from the right
lim
x
→
1
−
6
5
=
6
5
\lim_{x \to 1^-} \frac{6}{5} = \frac{6}{5}
x
→
1
−
lim
5
6
=
5
6
More at x→1 from the left
lim
x
→
1
+
6
5
=
6
5
\lim_{x \to 1^+} \frac{6}{5} = \frac{6}{5}
x
→
1
+
lim
5
6
=
5
6
More at x→1 from the right
lim
x
→
−
∞
6
5
=
6
5
\lim_{x \to -\infty} \frac{6}{5} = \frac{6}{5}
x
→
−
∞
lim
5
6
=
5
6
More at x→-oo
Rapid solution
[src]
6/5
6
5
\frac{6}{5}
5
6
Expand and simplify
The graph