$$\lim_{x \to \frac{\pi}{2}^-}\left(\sin^{2}{\left(x \right)} \tan{\left(x \right)}\right) = -\infty$$
More at x→pi/2 from the left$$\lim_{x \to \frac{\pi}{2}^+}\left(\sin^{2}{\left(x \right)} \tan{\left(x \right)}\right) = -\infty$$
$$\lim_{x \to \infty}\left(\sin^{2}{\left(x \right)} \tan{\left(x \right)}\right)$$
More at x→oo$$\lim_{x \to 0^-}\left(\sin^{2}{\left(x \right)} \tan{\left(x \right)}\right) = 0$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(\sin^{2}{\left(x \right)} \tan{\left(x \right)}\right) = 0$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(\sin^{2}{\left(x \right)} \tan{\left(x \right)}\right) = \sin^{2}{\left(1 \right)} \tan{\left(1 \right)}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(\sin^{2}{\left(x \right)} \tan{\left(x \right)}\right) = \sin^{2}{\left(1 \right)} \tan{\left(1 \right)}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(\sin^{2}{\left(x \right)} \tan{\left(x \right)}\right)$$
More at x→-oo