Mister Exam

Other calculators:


sin(x)^2/tan(x^2)

Limit of the function sin(x)^2/tan(x^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   2   \
     |sin (x)|
 lim |-------|
x->0+|   / 2\|
     \tan\x //
$$\lim_{x \to 0^+}\left(\frac{\sin^{2}{\left(x \right)}}{\tan{\left(x^{2} \right)}}\right)$$
Limit(sin(x)^2/tan(x^2), x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+} \sin^{2}{\left(x \right)} = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+} \tan{\left(x^{2} \right)} = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{\sin^{2}{\left(x \right)}}{\tan{\left(x^{2} \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \sin^{2}{\left(x \right)}}{\frac{d}{d x} \tan{\left(x^{2} \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(x \right)} \cos{\left(x \right)}}{x \left(\tan^{2}{\left(x^{2} \right)} + 1\right)}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(x \right)}}{x}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} 2 \sin{\left(x \right)}}{\frac{d}{d x} 2 x}\right)$$
=
$$\lim_{x \to 0^+} \cos{\left(x \right)}$$
=
$$\lim_{x \to 0^+} 1$$
=
$$\lim_{x \to 0^+} 1$$
=
$$1$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 2 time(s)
The graph
Rapid solution [src]
1
$$1$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{\sin^{2}{\left(x \right)}}{\tan{\left(x^{2} \right)}}\right) = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\sin^{2}{\left(x \right)}}{\tan{\left(x^{2} \right)}}\right) = 1$$
$$\lim_{x \to \infty}\left(\frac{\sin^{2}{\left(x \right)}}{\tan{\left(x^{2} \right)}}\right) = \left\langle -\infty, \infty\right\rangle$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{\sin^{2}{\left(x \right)}}{\tan{\left(x^{2} \right)}}\right) = \frac{\sin^{2}{\left(1 \right)}}{\tan{\left(1 \right)}}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\sin^{2}{\left(x \right)}}{\tan{\left(x^{2} \right)}}\right) = \frac{\sin^{2}{\left(1 \right)}}{\tan{\left(1 \right)}}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\sin^{2}{\left(x \right)}}{\tan{\left(x^{2} \right)}}\right) = \left\langle -\infty, \infty\right\rangle$$
More at x→-oo
One‐sided limits [src]
     /   2   \
     |sin (x)|
 lim |-------|
x->0+|   / 2\|
     \tan\x //
$$\lim_{x \to 0^+}\left(\frac{\sin^{2}{\left(x \right)}}{\tan{\left(x^{2} \right)}}\right)$$
1
$$1$$
= 1
     /   2   \
     |sin (x)|
 lim |-------|
x->0-|   / 2\|
     \tan\x //
$$\lim_{x \to 0^-}\left(\frac{\sin^{2}{\left(x \right)}}{\tan{\left(x^{2} \right)}}\right)$$
1
$$1$$
= 1
= 1
Numerical answer [src]
1.0
1.0
The graph
Limit of the function sin(x)^2/tan(x^2)