We have indeterminateness of type
0/0,
i.e. limit for the numerator is
$$\lim_{x \to 0^+} \sin{\left(x^{3} \right)} = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+} x^{3} = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(x^{3} \right)}}{x^{3}}\right)$$
=
Let's transform the function under the limit a few
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(x^{3} \right)}}{x^{3}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \sin{\left(x^{3} \right)}}{\frac{d}{d x} x^{3}}\right)$$
=
$$\lim_{x \to 0^+} \cos{\left(x^{3} \right)}$$
=
$$\lim_{x \to 0^+} 1$$
=
$$\lim_{x \to 0^+} 1$$
=
$$\lim_{x \to 0^+} 1$$
=
$$\lim_{x \to 0^+} 1$$
=
$$\lim_{x \to 0^+} 1$$
=
$$\lim_{x \to 0^+} 1$$
=
$$1$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 3 time(s)