Mister Exam

Other calculators:


sin(x)^4/x^4

You entered:

sin(x)^4/x^4

What you mean?

Limit of the function sin(x)^4/x^4

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   4   \
     |sin (x)|
 lim |-------|
x->0+|    4  |
     \   x   /
$$\lim_{x \to 0^+}\left(\frac{\sin^{4}{\left(x \right)}}{x^{4}}\right)$$
Limit(sin(x)^4/(x^4), x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+} \sin^{4}{\left(x \right)} = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+} x^{4} = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{\sin^{4}{\left(x \right)}}{x^{4}}\right)$$
=
Let's transform the function under the limit a few
$$\lim_{x \to 0^+}\left(\frac{\sin^{4}{\left(x \right)}}{x^{4}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \sin^{4}{\left(x \right)}}{\frac{d}{d x} x^{4}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\sin^{3}{\left(x \right)} \cos{\left(x \right)}}{x^{3}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\sin^{3}{\left(x \right)}}{x^{3}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} 4 \sin^{3}{\left(x \right)}}{\frac{d}{d x} 4 x^{3}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\sin^{2}{\left(x \right)} \cos{\left(x \right)}}{x^{2}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\sin^{2}{\left(x \right)}}{x^{2}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} 12 \sin^{2}{\left(x \right)}}{\frac{d}{d x} 12 x^{2}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(x \right)} \cos{\left(x \right)}}{x}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(x \right)}}{x}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} 24 \sin{\left(x \right)}}{\frac{d}{d x} 24 x}\right)$$
=
$$\lim_{x \to 0^+} \cos{\left(x \right)}$$
=
$$\lim_{x \to 0^+} 1$$
=
$$\lim_{x \to 0^+} 1$$
=
$$1$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 4 time(s)
The graph
One‐sided limits [src]
     /   4   \
     |sin (x)|
 lim |-------|
x->0+|    4  |
     \   x   /
$$\lim_{x \to 0^+}\left(\frac{\sin^{4}{\left(x \right)}}{x^{4}}\right)$$
1
$$1$$
= 1
     /   4   \
     |sin (x)|
 lim |-------|
x->0-|    4  |
     \   x   /
$$\lim_{x \to 0^-}\left(\frac{\sin^{4}{\left(x \right)}}{x^{4}}\right)$$
1
$$1$$
= 1
= 1
Rapid solution [src]
1
$$1$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{\sin^{4}{\left(x \right)}}{x^{4}}\right) = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\sin^{4}{\left(x \right)}}{x^{4}}\right) = 1$$
$$\lim_{x \to \infty}\left(\frac{\sin^{4}{\left(x \right)}}{x^{4}}\right) = 0$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{\sin^{4}{\left(x \right)}}{x^{4}}\right) = \sin^{4}{\left(1 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\sin^{4}{\left(x \right)}}{x^{4}}\right) = \sin^{4}{\left(1 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\sin^{4}{\left(x \right)}}{x^{4}}\right) = 0$$
More at x→-oo
Numerical answer [src]
1.0
1.0
The graph
Limit of the function sin(x)^4/x^4