Mister Exam

Other calculators:


sin(x)+sin(3*x)

Limit of the function sin(x)+sin(3*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (sin(x) + sin(3*x))
x->0+                   
$$\lim_{x \to 0^+}\left(\sin{\left(x \right)} + \sin{\left(3 x \right)}\right)$$
Limit(sin(x) + sin(3*x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
 lim (sin(x) + sin(3*x))
x->0+                   
$$\lim_{x \to 0^+}\left(\sin{\left(x \right)} + \sin{\left(3 x \right)}\right)$$
0
$$0$$
= 2.08843875436728e-30
 lim (sin(x) + sin(3*x))
x->0-                   
$$\lim_{x \to 0^-}\left(\sin{\left(x \right)} + \sin{\left(3 x \right)}\right)$$
0
$$0$$
= -2.08843875436728e-30
= -2.08843875436728e-30
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\sin{\left(x \right)} + \sin{\left(3 x \right)}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\sin{\left(x \right)} + \sin{\left(3 x \right)}\right) = 0$$
$$\lim_{x \to \infty}\left(\sin{\left(x \right)} + \sin{\left(3 x \right)}\right) = \left\langle -2, 2\right\rangle$$
More at x→oo
$$\lim_{x \to 1^-}\left(\sin{\left(x \right)} + \sin{\left(3 x \right)}\right) = \sin{\left(3 \right)} + \sin{\left(1 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\sin{\left(x \right)} + \sin{\left(3 x \right)}\right) = \sin{\left(3 \right)} + \sin{\left(1 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\sin{\left(x \right)} + \sin{\left(3 x \right)}\right) = \left\langle -2, 2\right\rangle$$
More at x→-oo
Numerical answer [src]
2.08843875436728e-30
2.08843875436728e-30
The graph
Limit of the function sin(x)+sin(3*x)