Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-exp(-x)-2*x+exp(x))/(x-sin(x))
Limit of (1-x^3+5*x^4)/(x+2*x^4)
Limit of (3-3*x^2+4*x^4+6*x^3)/(2*x^2+7*x^4)
Limit of -5-2*x+16*x^2/3
Graphing y =
:
sin(x)/x^4
Identical expressions
sin(x)/x^ four
sinus of (x) divide by x to the power of 4
sinus of (x) divide by x to the power of four
sin(x)/x4
sinx/x4
sin(x)/x⁴
sinx/x^4
sin(x) divide by x^4
Similar expressions
sinx/x^4
Limit of the function
/
sin(x)/x^4
Limit of the function sin(x)/x^4
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/sin(x)\ lim |------| x->oo| 4 | \ x /
lim
x
→
∞
(
sin
(
x
)
x
4
)
\lim_{x \to \infty}\left(\frac{\sin{\left(x \right)}}{x^{4}}\right)
x
→
∞
lim
(
x
4
sin
(
x
)
)
Limit(sin(x)/x^4, x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
-2000
2000
Plot the graph
Rapid solution
[src]
0
0
0
0
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
(
sin
(
x
)
x
4
)
=
0
\lim_{x \to \infty}\left(\frac{\sin{\left(x \right)}}{x^{4}}\right) = 0
x
→
∞
lim
(
x
4
sin
(
x
)
)
=
0
lim
x
→
0
−
(
sin
(
x
)
x
4
)
=
−
∞
\lim_{x \to 0^-}\left(\frac{\sin{\left(x \right)}}{x^{4}}\right) = -\infty
x
→
0
−
lim
(
x
4
sin
(
x
)
)
=
−
∞
More at x→0 from the left
lim
x
→
0
+
(
sin
(
x
)
x
4
)
=
∞
\lim_{x \to 0^+}\left(\frac{\sin{\left(x \right)}}{x^{4}}\right) = \infty
x
→
0
+
lim
(
x
4
sin
(
x
)
)
=
∞
More at x→0 from the right
lim
x
→
1
−
(
sin
(
x
)
x
4
)
=
sin
(
1
)
\lim_{x \to 1^-}\left(\frac{\sin{\left(x \right)}}{x^{4}}\right) = \sin{\left(1 \right)}
x
→
1
−
lim
(
x
4
sin
(
x
)
)
=
sin
(
1
)
More at x→1 from the left
lim
x
→
1
+
(
sin
(
x
)
x
4
)
=
sin
(
1
)
\lim_{x \to 1^+}\left(\frac{\sin{\left(x \right)}}{x^{4}}\right) = \sin{\left(1 \right)}
x
→
1
+
lim
(
x
4
sin
(
x
)
)
=
sin
(
1
)
More at x→1 from the right
lim
x
→
−
∞
(
sin
(
x
)
x
4
)
=
0
\lim_{x \to -\infty}\left(\frac{\sin{\left(x \right)}}{x^{4}}\right) = 0
x
→
−
∞
lim
(
x
4
sin
(
x
)
)
=
0
More at x→-oo
The graph