Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of -7+x^2-4*x-2*x^3
Limit of (x^2+10*x)/tan(5*x)
Limit of ((1+x)/(2+x))^(1+x)
Limit of ((-1+x)/(5+4*x))^(3*x)
Integral of d{x}
:
sin(x/2)/x
Identical expressions
sin(x/ two)/x
sinus of (x divide by 2) divide by x
sinus of (x divide by two) divide by x
sinx/2/x
sin(x divide by 2) divide by x
Similar expressions
(1-x^2-cos(x)+x*sin(x)/2)/x
-(1-x^2-cos(x)+x*sin(x)/2)/x^2
Limit of the function
/
sin(x/2)/x
Limit of the function sin(x/2)/x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ /x\\ |sin|-|| | \2/| lim |------| x->oo\ x /
lim
x
→
∞
(
sin
(
x
2
)
x
)
\lim_{x \to \infty}\left(\frac{\sin{\left(\frac{x}{2} \right)}}{x}\right)
x
→
∞
lim
(
x
sin
(
2
x
)
)
Limit(sin(x/2)/x, x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
1.0
-0.5
Plot the graph
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
(
sin
(
x
2
)
x
)
=
0
\lim_{x \to \infty}\left(\frac{\sin{\left(\frac{x}{2} \right)}}{x}\right) = 0
x
→
∞
lim
(
x
sin
(
2
x
)
)
=
0
lim
x
→
0
−
(
sin
(
x
2
)
x
)
=
1
2
\lim_{x \to 0^-}\left(\frac{\sin{\left(\frac{x}{2} \right)}}{x}\right) = \frac{1}{2}
x
→
0
−
lim
(
x
sin
(
2
x
)
)
=
2
1
More at x→0 from the left
lim
x
→
0
+
(
sin
(
x
2
)
x
)
=
1
2
\lim_{x \to 0^+}\left(\frac{\sin{\left(\frac{x}{2} \right)}}{x}\right) = \frac{1}{2}
x
→
0
+
lim
(
x
sin
(
2
x
)
)
=
2
1
More at x→0 from the right
lim
x
→
1
−
(
sin
(
x
2
)
x
)
=
sin
(
1
2
)
\lim_{x \to 1^-}\left(\frac{\sin{\left(\frac{x}{2} \right)}}{x}\right) = \sin{\left(\frac{1}{2} \right)}
x
→
1
−
lim
(
x
sin
(
2
x
)
)
=
sin
(
2
1
)
More at x→1 from the left
lim
x
→
1
+
(
sin
(
x
2
)
x
)
=
sin
(
1
2
)
\lim_{x \to 1^+}\left(\frac{\sin{\left(\frac{x}{2} \right)}}{x}\right) = \sin{\left(\frac{1}{2} \right)}
x
→
1
+
lim
(
x
sin
(
2
x
)
)
=
sin
(
2
1
)
More at x→1 from the right
lim
x
→
−
∞
(
sin
(
x
2
)
x
)
=
0
\lim_{x \to -\infty}\left(\frac{\sin{\left(\frac{x}{2} \right)}}{x}\right) = 0
x
→
−
∞
lim
(
x
sin
(
2
x
)
)
=
0
More at x→-oo
Rapid solution
[src]
0
0
0
0
Expand and simplify
The graph