Mister Exam

Other calculators:


sin(x)/cos(x)^2

Limit of the function sin(x)/cos(x)^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      / sin(x)\
 lim  |-------|
   pi |   2   |
x->--+\cos (x)/
   2           
limxπ2+(sin(x)cos2(x))\lim_{x \to \frac{\pi}{2}^+}\left(\frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}\right)
Limit(sin(x)/(cos(x)^2), x, pi/2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-3.0-2.5-2.0-1.5-1.0-0.50.00.51.01.52.02.53.0-2500025000
Rapid solution [src]
oo
\infty
One‐sided limits [src]
      / sin(x)\
 lim  |-------|
   pi |   2   |
x->--+\cos (x)/
   2           
limxπ2+(sin(x)cos2(x))\lim_{x \to \frac{\pi}{2}^+}\left(\frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}\right)
oo
\infty
= 22800.8333307754
      / sin(x)\
 lim  |-------|
   pi |   2   |
x->---\cos (x)/
   2           
limxπ2(sin(x)cos2(x))\lim_{x \to \frac{\pi}{2}^-}\left(\frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}\right)
oo
\infty
= 22800.8333307745
= 22800.8333307745
Other limits x→0, -oo, +oo, 1
limxπ2(sin(x)cos2(x))=\lim_{x \to \frac{\pi}{2}^-}\left(\frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}\right) = \infty
More at x→pi/2 from the left
limxπ2+(sin(x)cos2(x))=\lim_{x \to \frac{\pi}{2}^+}\left(\frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}\right) = \infty
limx(sin(x)cos2(x))=,\lim_{x \to \infty}\left(\frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}\right) = \left\langle -\infty, \infty\right\rangle
More at x→oo
limx0(sin(x)cos2(x))=0\lim_{x \to 0^-}\left(\frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}\right) = 0
More at x→0 from the left
limx0+(sin(x)cos2(x))=0\lim_{x \to 0^+}\left(\frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}\right) = 0
More at x→0 from the right
limx1(sin(x)cos2(x))=sin(1)cos2(1)\lim_{x \to 1^-}\left(\frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}\right) = \frac{\sin{\left(1 \right)}}{\cos^{2}{\left(1 \right)}}
More at x→1 from the left
limx1+(sin(x)cos2(x))=sin(1)cos2(1)\lim_{x \to 1^+}\left(\frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}\right) = \frac{\sin{\left(1 \right)}}{\cos^{2}{\left(1 \right)}}
More at x→1 from the right
limx(sin(x)cos2(x))=,\lim_{x \to -\infty}\left(\frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}\right) = \left\langle -\infty, \infty\right\rangle
More at x→-oo
Numerical answer [src]
22800.8333307754
22800.8333307754
The graph
Limit of the function sin(x)/cos(x)^2