Mister Exam

Other calculators:


sin(x)/cos(x)

Limit of the function sin(x)/cos(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /sin(x)\
 lim  |------|
   pi \cos(x)/
x->--+        
   2          
$$\lim_{x \to \frac{\pi}{2}^+}\left(\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}\right)$$
Limit(sin(x)/cos(x), x, pi/2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
      /sin(x)\
 lim  |------|
   pi \cos(x)/
x->--+        
   2          
$$\lim_{x \to \frac{\pi}{2}^+}\left(\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}\right)$$
-oo
$$-\infty$$
= -150.997792488028
      /sin(x)\
 lim  |------|
   pi \cos(x)/
x->---        
   2          
$$\lim_{x \to \frac{\pi}{2}^-}\left(\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}\right)$$
oo
$$\infty$$
= 150.997792488025
= 150.997792488025
Rapid solution [src]
-oo
$$-\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \frac{\pi}{2}^-}\left(\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}\right) = -\infty$$
More at x→pi/2 from the left
$$\lim_{x \to \frac{\pi}{2}^+}\left(\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}\right) = -\infty$$
$$\lim_{x \to \infty}\left(\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}\right)$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}\right) = \frac{\sin{\left(1 \right)}}{\cos{\left(1 \right)}}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}\right) = \frac{\sin{\left(1 \right)}}{\cos{\left(1 \right)}}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}\right)$$
More at x→-oo
Numerical answer [src]
-150.997792488028
-150.997792488028
The graph
Limit of the function sin(x)/cos(x)