Mister Exam

Other calculators:


sin(3*x)/sin(2*x)

Limit of the function sin(3*x)/sin(2*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /sin(3*x)\
 lim |--------|
x->oo\sin(2*x)/
$$\lim_{x \to \infty}\left(\frac{\sin{\left(3 x \right)}}{\sin{\left(2 x \right)}}\right)$$
Limit(sin(3*x)/sin(2*x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
     /sin(3*x)\
 lim |--------|
x->oo\sin(2*x)/
$$\lim_{x \to \infty}\left(\frac{\sin{\left(3 x \right)}}{\sin{\left(2 x \right)}}\right)$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{\sin{\left(3 x \right)}}{\sin{\left(2 x \right)}}\right)$$
$$\lim_{x \to 0^-}\left(\frac{\sin{\left(3 x \right)}}{\sin{\left(2 x \right)}}\right) = \frac{3}{2}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(3 x \right)}}{\sin{\left(2 x \right)}}\right) = \frac{3}{2}$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{\sin{\left(3 x \right)}}{\sin{\left(2 x \right)}}\right) = \frac{\sin{\left(3 \right)}}{\sin{\left(2 \right)}}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\sin{\left(3 x \right)}}{\sin{\left(2 x \right)}}\right) = \frac{\sin{\left(3 \right)}}{\sin{\left(2 \right)}}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\sin{\left(3 x \right)}}{\sin{\left(2 x \right)}}\right)$$
More at x→-oo
The graph
Limit of the function sin(3*x)/sin(2*x)