$$\lim_{x \to 0^-}\left(\frac{\sin{\left(\pi x \right)}}{\log{\left(x \right)}}\right) = 0$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(\frac{\sin{\left(\pi x \right)}}{\log{\left(x \right)}}\right) = 0$$
$$\lim_{x \to \infty}\left(\frac{\sin{\left(\pi x \right)}}{\log{\left(x \right)}}\right) = 0$$
More at x→oo$$\lim_{x \to 1^-}\left(\frac{\sin{\left(\pi x \right)}}{\log{\left(x \right)}}\right) = - \pi$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(\frac{\sin{\left(\pi x \right)}}{\log{\left(x \right)}}\right) = - \pi$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(\frac{\sin{\left(\pi x \right)}}{\log{\left(x \right)}}\right) = 0$$
More at x→-oo