Mister Exam

Other calculators:


sin(pi*x)/log(x)

Limit of the function sin(pi*x)/log(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /sin(pi*x)\
 lim |---------|
x->0+\  log(x) /
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(\pi x \right)}}{\log{\left(x \right)}}\right)$$
Limit(sin(pi*x)/log(x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
     /sin(pi*x)\
 lim |---------|
x->0+\  log(x) /
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(\pi x \right)}}{\log{\left(x \right)}}\right)$$
0
$$0$$
= -9.82959298810697e-5
     /sin(pi*x)\
 lim |---------|
x->0-\  log(x) /
$$\lim_{x \to 0^-}\left(\frac{\sin{\left(\pi x \right)}}{\log{\left(x \right)}}\right)$$
0
$$0$$
= (8.20815159198675e-5 + 3.41329554184671e-5j)
= (8.20815159198675e-5 + 3.41329554184671e-5j)
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{\sin{\left(\pi x \right)}}{\log{\left(x \right)}}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(\pi x \right)}}{\log{\left(x \right)}}\right) = 0$$
$$\lim_{x \to \infty}\left(\frac{\sin{\left(\pi x \right)}}{\log{\left(x \right)}}\right) = 0$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{\sin{\left(\pi x \right)}}{\log{\left(x \right)}}\right) = - \pi$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\sin{\left(\pi x \right)}}{\log{\left(x \right)}}\right) = - \pi$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\sin{\left(\pi x \right)}}{\log{\left(x \right)}}\right) = 0$$
More at x→-oo
Numerical answer [src]
-9.82959298810697e-5
-9.82959298810697e-5
The graph
Limit of the function sin(pi*x)/log(x)