$$\lim_{x \to 2^-} \sin{\left(\frac{\pi x}{4} \right)} = 1$$ More at x→2 from the left $$\lim_{x \to 2^+} \sin{\left(\frac{\pi x}{4} \right)} = 1$$ $$\lim_{x \to \infty} \sin{\left(\frac{\pi x}{4} \right)} = \left\langle -1, 1\right\rangle$$ More at x→oo $$\lim_{x \to 0^-} \sin{\left(\frac{\pi x}{4} \right)} = 0$$ More at x→0 from the left $$\lim_{x \to 0^+} \sin{\left(\frac{\pi x}{4} \right)} = 0$$ More at x→0 from the right $$\lim_{x \to 1^-} \sin{\left(\frac{\pi x}{4} \right)} = \frac{\sqrt{2}}{2}$$ More at x→1 from the left $$\lim_{x \to 1^+} \sin{\left(\frac{\pi x}{4} \right)} = \frac{\sqrt{2}}{2}$$ More at x→1 from the right $$\lim_{x \to -\infty} \sin{\left(\frac{\pi x}{4} \right)} = \left\langle -1, 1\right\rangle$$ More at x→-oo