Mister Exam

Other calculators:


sin(pi*x/4)

Limit of the function sin(pi*x/4)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        /pi*x\
 lim sin|----|
x->2+   \ 4  /
$$\lim_{x \to 2^+} \sin{\left(\frac{\pi x}{4} \right)}$$
Limit(sin((pi*x)/4), x, 2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
        /pi*x\
 lim sin|----|
x->2+   \ 4  /
$$\lim_{x \to 2^+} \sin{\left(\frac{\pi x}{4} \right)}$$
1
$$1$$
= 1.0
        /pi*x\
 lim sin|----|
x->2-   \ 4  /
$$\lim_{x \to 2^-} \sin{\left(\frac{\pi x}{4} \right)}$$
1
$$1$$
= 1.0
= 1.0
Rapid solution [src]
1
$$1$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 2^-} \sin{\left(\frac{\pi x}{4} \right)} = 1$$
More at x→2 from the left
$$\lim_{x \to 2^+} \sin{\left(\frac{\pi x}{4} \right)} = 1$$
$$\lim_{x \to \infty} \sin{\left(\frac{\pi x}{4} \right)} = \left\langle -1, 1\right\rangle$$
More at x→oo
$$\lim_{x \to 0^-} \sin{\left(\frac{\pi x}{4} \right)} = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+} \sin{\left(\frac{\pi x}{4} \right)} = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-} \sin{\left(\frac{\pi x}{4} \right)} = \frac{\sqrt{2}}{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \sin{\left(\frac{\pi x}{4} \right)} = \frac{\sqrt{2}}{2}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \sin{\left(\frac{\pi x}{4} \right)} = \left\langle -1, 1\right\rangle$$
More at x→-oo
Numerical answer [src]
1.0
1.0
The graph
Limit of the function sin(pi*x/4)