Mister Exam

Other calculators:


sin(5*x)/x

Limit of the function sin(5*x)/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /sin(5*x)\
 lim |--------|
x->oo\   x    /
limx(sin(5x)x)\lim_{x \to \infty}\left(\frac{\sin{\left(5 x \right)}}{x}\right)
Limit(sin(5*x)/x, x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-10105-5
Rapid solution [src]
0
00
Other limits x→0, -oo, +oo, 1
limx(sin(5x)x)=0\lim_{x \to \infty}\left(\frac{\sin{\left(5 x \right)}}{x}\right) = 0
limx0(sin(5x)x)=5\lim_{x \to 0^-}\left(\frac{\sin{\left(5 x \right)}}{x}\right) = 5
More at x→0 from the left
limx0+(sin(5x)x)=5\lim_{x \to 0^+}\left(\frac{\sin{\left(5 x \right)}}{x}\right) = 5
More at x→0 from the right
limx1(sin(5x)x)=sin(5)\lim_{x \to 1^-}\left(\frac{\sin{\left(5 x \right)}}{x}\right) = \sin{\left(5 \right)}
More at x→1 from the left
limx1+(sin(5x)x)=sin(5)\lim_{x \to 1^+}\left(\frac{\sin{\left(5 x \right)}}{x}\right) = \sin{\left(5 \right)}
More at x→1 from the right
limx(sin(5x)x)=0\lim_{x \to -\infty}\left(\frac{\sin{\left(5 x \right)}}{x}\right) = 0
More at x→-oo
The graph
Limit of the function sin(5*x)/x