Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of ((5+6*x)/(-10+x))^(5*x)
Limit of (-4-7*x+2*x^2)/(4-13*x+3*x^2)
Limit of (-12+x^2-4*x)/(48+x^2-14*x)
Limit of (-1+e^(2*x))/(3*x)
Graphing y =
:
sin(5*x)/x
Identical expressions
sin(five *x)/x
sinus of (5 multiply by x) divide by x
sinus of (five multiply by x) divide by x
sin(5x)/x
sin5x/x
sin(5*x) divide by x
Similar expressions
sin(5*x)/(x-pi)
sin(5*x)/(x^2+2*x)
(sin(3*x)+sin(5*x))/x
(1-sin(5*x))/(x-pi/2)^2
Limit of the function
/
sin(5*x)/x
Limit of the function sin(5*x)/x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/sin(5*x)\ lim |--------| x->oo\ x /
lim
x
→
∞
(
sin
(
5
x
)
x
)
\lim_{x \to \infty}\left(\frac{\sin{\left(5 x \right)}}{x}\right)
x
→
∞
lim
(
x
sin
(
5
x
)
)
Limit(sin(5*x)/x, x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
5
-5
Plot the graph
Rapid solution
[src]
0
0
0
0
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
(
sin
(
5
x
)
x
)
=
0
\lim_{x \to \infty}\left(\frac{\sin{\left(5 x \right)}}{x}\right) = 0
x
→
∞
lim
(
x
sin
(
5
x
)
)
=
0
lim
x
→
0
−
(
sin
(
5
x
)
x
)
=
5
\lim_{x \to 0^-}\left(\frac{\sin{\left(5 x \right)}}{x}\right) = 5
x
→
0
−
lim
(
x
sin
(
5
x
)
)
=
5
More at x→0 from the left
lim
x
→
0
+
(
sin
(
5
x
)
x
)
=
5
\lim_{x \to 0^+}\left(\frac{\sin{\left(5 x \right)}}{x}\right) = 5
x
→
0
+
lim
(
x
sin
(
5
x
)
)
=
5
More at x→0 from the right
lim
x
→
1
−
(
sin
(
5
x
)
x
)
=
sin
(
5
)
\lim_{x \to 1^-}\left(\frac{\sin{\left(5 x \right)}}{x}\right) = \sin{\left(5 \right)}
x
→
1
−
lim
(
x
sin
(
5
x
)
)
=
sin
(
5
)
More at x→1 from the left
lim
x
→
1
+
(
sin
(
5
x
)
x
)
=
sin
(
5
)
\lim_{x \to 1^+}\left(\frac{\sin{\left(5 x \right)}}{x}\right) = \sin{\left(5 \right)}
x
→
1
+
lim
(
x
sin
(
5
x
)
)
=
sin
(
5
)
More at x→1 from the right
lim
x
→
−
∞
(
sin
(
5
x
)
x
)
=
0
\lim_{x \to -\infty}\left(\frac{\sin{\left(5 x \right)}}{x}\right) = 0
x
→
−
∞
lim
(
x
sin
(
5
x
)
)
=
0
More at x→-oo
The graph