$$\lim_{x \to \infty}\left(\frac{\sin{\left(8 x \right)}}{\tan{\left(4 x \right)}}\right)$$
$$\lim_{x \to 0^-}\left(\frac{\sin{\left(8 x \right)}}{\tan{\left(4 x \right)}}\right) = 2$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(\frac{\sin{\left(8 x \right)}}{\tan{\left(4 x \right)}}\right) = 2$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(\frac{\sin{\left(8 x \right)}}{\tan{\left(4 x \right)}}\right) = \frac{\sin{\left(8 \right)}}{\tan{\left(4 \right)}}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(\frac{\sin{\left(8 x \right)}}{\tan{\left(4 x \right)}}\right) = \frac{\sin{\left(8 \right)}}{\tan{\left(4 \right)}}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(\frac{\sin{\left(8 x \right)}}{\tan{\left(4 x \right)}}\right)$$
More at x→-oo